Estimates for the convergence rate in the limit theorem for extreme values of regenerative processes
Abstract
UDC 519.21
We establish the rate of convergence to the exponential distribution in the general limit theorem for the extreme values of regenerative processes. We also suggest some applications of this result to birth and death processes and queue length processes.
References
W. L. Smith, Renewal theory and its ramifications, J. Roy. Statist. Soc., 20, № 2, 243 – 302 (1958).
W. Feller, An introduction to probability theory and its applications, vol.2, John Wiley and Sons, New York etc., xviii +509 pp. (1968).
S. Asmussen, Extreme values theory for queues via cycle maxima, Extremes, 1, 137 – 168 (1998), https://doi.org/10.1023/A:1009970005784 DOI: https://doi.org/10.1023/A:1009970005784
R. F. Serfozo, Extreme values of birdh and death processes and queues, Stochastic Process. and Appl., 27, 291 – 306 (1988), https://doi.org/10.1016/0304-4149(87)90043-3 DOI: https://doi.org/10.1016/0304-4149(87)90043-3
O. K. Zakusilo, I. K. Matsak, Про екстремальнi значення деяких регенеруючих процесiв (Ukrainian) [[Pro ekstremal`ni znachennya deyakikh regeneruyuchikh proczesiv]], Teoriya jmovirnosti ta mat. statisika., 97, 58 – 71 (2017).
V. V. Petrov, Sums of independent random variables, Springer, Berlin, Heidelberg, x + 346 pp.(1975). DOI: https://doi.org/10.1007/978-3-642-65809-9
A. Rényi, A Poisson-folyamat egy jellemzese, Magyar Tud. Akad. Mat. Kutato. Int Közl., 1, 519 – 527 (1956).
S. Yu. Vsekhsvyatskii, V. V. Kalashnikov, Estimates of the moments of occurrence of rare events in regenerative processes, Theory Probab. and Appl., 30, 618 – 621 (1986). DOI: https://doi.org/10.1137/1130080
Kruglov, V. M.; Korolev, V. Yu., Предельные теоремы для случайных сумм (Russian) [[Limit theorems for random sums]] Yzd-vo Mosk. un-ta, Moskva, ISBN: 5-211-00960-6 (1990).
J. Riordan, Stochastic service systems, John Wiley and Sons, New York, London, x +139 pp. (1962).
S. Karlin, A first course in stochastic processes, Acad. Press, New York, xi +502 pp. (1968). DOI: https://doi.org/10.1016/B978-1-4832-3099-3.50017-6
V. V. Anisimov, O. K. Zakusilo, V. S. Donchenko, Элементы теории массового обслуживания и асимптотического анализа систем(Russian) [[E`lementy` teorii massovogo obsluzhivaniya i asimptoticheskogo analiza sistem]], Vishha shk., Kiev (1987).
S. Karlin, J. McGregor, The classification of birth and death processes, Trans. Amer. Math. Soc., 86, 366 – 400 (1957). DOI: https://doi.org/10.1090/S0002-9947-1957-0094854-8
I. Matsak, O. Skurzhans`kij, Граничнi теореми для екстремальних значень довжини черги в системах масового обслуговування (Ukrainian) [[Granichni teoremi dlya ekstremal`nikh znachen` dovzhini chergi v sistemakh masovogo obslugovuvannya]], Visn. Kiyiv. nacz. un-tu im. T. Shevchenka, Ser. fiz.-mat. nauki № 1, 39, 28 – 36 (2018).
Copyright (c) 2020 Іван мацак, Олег Закусило
This work is licensed under a Creative Commons Attribution 4.0 International License.