Embedding theorems and maximal subsemigroups of some linear transformation semigroups with restricted range

Keywords: linear transformation; restricted range; embedding; maximal subsemigroup

Abstract

UDC 512.64

Let $V$ be a vector space and let $T(V)$ denote the semigroup (under composition) of all linear transformations from $V$ into $V$. For a fixed subspace $W$ of $V$, let $T(V,W)$ be the semigroup consisting of all linear transformations from $V$ into $W$. It is known that \[ F(V,W) =\{\alpha\in T(V,W): V\alpha\subseteq W\alpha\} \] is the largest regular subsemigroup of $T(V,W)$. In this paper, we prove that any regular semigroup $S$ can be embedded in $F(V,W)$ with $\dim(V) = |S^1|$ and $\dim(W) = |S|$, and determine all the maximal subsemigroups of $F(V,W)$ when $W$ is a finite dimensional subspace of $V$ over a finite field.

References

R. A. Bayramov, On the problem of completeness in a symmetric semigroup of finite degree, Diskret Analiz., 8, 3 – 26 (1966) (in Russian).

A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 1, Math. Surveys Amer. Math. Soc. 7, Providence, RI (1961). DOI: https://doi.org/10.1090/surv/007.1/01

A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 3, Math. Surveys Amer. Math. Soc. 7, Providence, RI (1967); https://doi.org/10.1007/BF02315965 DOI: https://doi.org/10.1090/surv/007.2/02

J. East, J. D. Michell, Y. P´eresse, Maximal subsemigroups of the semigroup of all mappings on an infinite set, Trans. Amer. Math. Soc., 367, № 3, 1911 – 1944 (2015); https://doi.org/10.1090/S0002-9947-2014-06110-2 DOI: https://doi.org/10.1090/S0002-9947-2014-06110-2

J. M. Howie, An introduction to semigroup theory, Acad. Press, London (1976).

T. W. Hungerford, Algebra, Springer-Verlag, New York (1974).

S. Mendes-Gon¸calves, R. P. Sullivan, Baer – Levi semigroups of linear transformations, Proc. Roy. Soc. Edinburgh Sect. A, 134A, № 3, 477 – 499 (2004); https://doi.org/10.1017/S0308210500003309 DOI: https://doi.org/10.1017/S0308210500003309

S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. and Appl. (PU.M.A.), 16, № 3, 307 – 314 (2005).

S. Nenthein, Y. Kemprasit, Regular elements of some semigroups of linear transformations and matrices, Int. Math. Forum, 2, № 4, 155 – 166 (2007); https://doi.org/10.12988/imf.2007.07014 DOI: https://doi.org/10.12988/imf.2007.07014

S. Roman, Advanced linear algebra, 3rd ed., Grad. Texts Math., Springer (2008). DOI: https://doi.org/10.1007/978-0-387-72831-5

J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum, 83, № 1, 134 – 146 (2011); https://doi.org/10.1007/s00233-011-9320-z DOI: https://doi.org/10.1007/s00233-011-9320-z

J. Sanwong, W. Sommanee, Regularity and Green’s relations on a semigroup of transformations with restricted range, Int. J. Math. and Math. Sci., Article ID 794013 (2008), 11 p.; https://doi.org/10.1155/2008/794013 DOI: https://doi.org/10.1155/2008/794013

W. Sommanee, The regular part of a semigroup of full transformations with restricted range: maximal inverse subsemigroups and maximal regular subsemigroups of its ideals, Int. J. Math. and Math. Sci., Article ID 2154745 (2018), 9 p.; https://doi.org/10.1155/2018/2154745 DOI: https://doi.org/10.1155/2018/2154745

W. Sommanee, K. Sangkhanan, The regular part of a semigroup of linear transformations with restricted range, J. Aust. Math. Soc., 103, № 3, 402 – 419 (2017); https://doi.org/10.1017/S144678871600080X DOI: https://doi.org/10.1017/S144678871600080X

W. Sommanee, J. Sanwong, Rank and idempotent rank of finite full transformation semigroups with restricted range, Semigroup Forum, 87, № 1, 230 – 242 (2013); https://doi.org/10.1007/s00233-013-9467-x DOI: https://doi.org/10.1007/s00233-013-9467-x

R. P. Sullivan, Embedding theorems for semigroups of generalised linear transformations, Southeast Asian Bull. Math., 36, № 4, 547 – 552 (2012).

R. P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Aust. Math. Soc., 77, № 3, 441 – 453 (2008); https://doi.org/10.1017/S0004972708000385 DOI: https://doi.org/10.1017/S0004972708000385

J. S. V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc., 19, № 4, 413 – 425 (1975). DOI: https://doi.org/10.1017/S1446788700034455

H. Yang, X. Yang, Maximal subsemigroups of finite transformation semigroups $K(n, r)$, Acta Math. Sin. (Engl. Ser.), 20, № 3, 475 – 482 (2004); https://doi.org/10.1007/s10114-004-0367-6 DOI: https://doi.org/10.1007/s10114-004-0367-6

T. You, Maximal regular subsemigroups of certain semigroups of transformations, Semigroup Forum, 64, № 3, 91 – 396 (2002); https://doi.org/10.1007/s002330010117 DOI: https://doi.org/10.1007/s002330010117

Published
17.12.2021
How to Cite
SommaneeW. “Embedding Theorems and Maximal Subsemigroups of Some Linear Transformation Semigroups With Restricted Range”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 12, Dec. 2021, pp. 1714 -22, doi:10.37863/umzh.v73i12.1289.
Section
Research articles