Order equalities for some functionals and their application to the estimation of the best $n$-term approximations and widths

  • A. L. Shydlich

Abstract

We study the behavior of functionals of the form $\sup_{l>n} (l-n)\left(∑^l_{k=1} \frac1{ψ^r(k)} \right)^{−1/r}$, where $ψ$ is a positive function, as $n → ∞$: The obtained results are used to establish the exact order equalities (as $n → ∞$) for the best $n$-term approximations of $q$-ellipsoids in metrics of the spaces $S^p_{φ}$: We also consider the applications of the obtained results to the determination of the exact orders of the Kolmogorov widths of octahedra in the Hilbert space.
Published
25.10.2009
How to Cite
ShydlichA. L. “Order Equalities for Some Functionals and Their Application to the Estimation of the Best $n$-Term Approximations and Widths”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, no. 10, Oct. 2009, pp. 1403-2, https://umj.imath.kiev.ua/index.php/umj/article/view/3110.
Section
Research articles