On Interpolation Sequences of One Class of Functions Analytic in the Unit Disk
Abstract
We establish a criterion for the existence of a solution of the interpolation problem f(λ n ) = b n in the class of functions f analytic in the unit disk and satisfying the relation $$\left( {\exists {\tau }_{1} \in \left( {0;1} \right)} \right)\;\left( {\exists c_1 >0} \right)\;\left( {\forall z,\left| z \right| < 1} \right):\;\left| {f\left( z \right)} \right| \leqslant \exp \left( {c_1 \gamma ^{{\tau }_{1} } \left( {\frac{{c_1 }}{{1 - \left| z \right|}}} \right)} \right),$$ where γ: [1; +∞) → (0; +∞) is an increasing function such that the function lnγ(t) is convex with respect to lnt on the interval [1; +∞) and lnt = o(lnγ(t)), t → ∞.
Published
25.07.2001
How to Cite
Vynnyts’kyiB. V., and SheparovychI. B. “On Interpolation Sequences of One Class of Functions Analytic in the Unit Disk”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 53, no. 7, July 2001, pp. 879-86, https://umj.imath.kiev.ua/index.php/umj/article/view/4309.
Issue
Section
Research articles