Some Tauberian theorems for the weighted mean method of summability of double sequence
Abstract
UDC 517.5
Let $p=(p_j)$ and $q=(q_k)$ be real sequences of nonnegative numbers with the property that $P_m=\sum _{j=0}^{m} p_j \neq 0$ and $Q_n=\sum _{k=0}^{n} q_k \neq 0$ for all $m$ and $n.$ Let $(P_m)$ and $(Q_n)$ be regulary varying positive indices. Assume that $(u_{mn})$ is a double sequence of complex (real) numbers, which is $(\overline{N},p,q; \alpha,\beta)$ summable with a finite limit, where $(\alpha,\beta)=(1,1)$, $(1,0)$, or $(0,1)$. We present some conditions imposed on the weights under which $(u_{mn})$ converges in Pringsheim's sense. These results generalize and extend the results obtained by authors in [Comput. Math. Appl., 62, No. 6, 2609–2615 (2011)].
References
B. Altay, F. Başar, Some new spaces of double sequences, J. Math. Anal. and Appl., 309, № 1, 70–90 (2005). DOI: https://doi.org/10.1016/j.jmaa.2004.12.020
S. Baron, U. StadtmÜller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. and Appl., 211, 574–589 (1997). DOI: https://doi.org/10.1006/jmaa.1997.5473
C. Belen, S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. and Comput., 219, 9821–9826 (2013). DOI: https://doi.org/10.1016/j.amc.2013.03.115
C. Belen, Some Tauberian theorems for weighted means of bounded double sequences, An. c{S}tiinc{t}. Univ. Al. I. Cuza Iaşi. Mat (N.S.), 63}, № 1, 115–122 (2017).
C. Chen, J. Hsu, Tauberian theorems for weighted means of double sequences, Anal. Math., 26, № 4, 243–262 (2000).
İ. Çanak, Ü. Totur, Some Tauberian theorems for the weighted mean methods of summability, Comput. Math. and Appl., 62, № 6, 2609–2615 (2011). DOI: https://doi.org/10.1016/j.camwa.2011.07.066
İ. Çanak, Ü. Totur, Tauberian theorems for the $(J,p)$ summability method, Appl. Math. Lett., 25, № 10, 1430–1434 (2012). DOI: https://doi.org/10.1016/j.aml.2011.12.017
İ. Çanak, Ü. Totur, Extended Tauberian theorem for the weighted mean method of summability, Ukr. Math. J., 65, № 7, 1032–1041 (2013). DOI: https://doi.org/10.1007/s11253-013-0839-x
İ. Çanak, Ü. Totur, A theorem for the $(J,p)$ summability method, Acta Math. Hungar., 145, № 1, 220–228 (2015). DOI: https://doi.org/10.1007/s10474-014-0452-y
D. Borwein, W. Kratz, On relations between weighted mean and power series methods of summability, J. Math. Anal. and Appl., 139, № 1, 178–186 (1989). DOI: https://doi.org/10.1016/0022-247X(89)90236-9
Á. Fekete, Tauberian conditions for double sequences that are statistically summable by weighted means, Sarajevo J. Math., 1 (14), № 2, 197–210 (2005).
G. H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc., 8, 301–320 (1910). DOI: https://doi.org/10.1112/plms/s2-8.1.301
G. H. Hardy, Divergent series, 2nd ed., Chelsea, New York, NY (1991).
K. Knopp, Limitierungs-Umkehrsätze fÜr Doppelfolgen, Math. Z., 45, 573–589 (1939). DOI: https://doi.org/10.1007/BF01580302
E. Landau, Über die Bedeutung einiger neuen Grenzwertsätze der Herren Hardy und Axer, Prace Mat. Fiz., 21, 97–177 (1910).
S. A. Mohiuddine, B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. RACSAM, 113, № 3, 1955–1973 (2019). DOI: https://doi.org/10.1007/s13398-018-0591-z
F. Móricz, Tauberian theorems for Cesàro summable double sequences, Stud. Math., 110, № 1, 83–96 (1994). DOI: https://doi.org/10.4064/sm-110-1-83-96
F. Móricz, B. E. Rhoades, Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability. II, Acta Math. Hungar., 102, № 4, 279–285 (2004). DOI: https://doi.org/10.1023/B:AMHU.0000024678.80514.94
A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53, 289–321 (1900). DOI: https://doi.org/10.1007/BF01448977
R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z., 22, 89–152 (1925). DOI: https://doi.org/10.1007/BF01479600
S. A. Sezer, İ. Çanak, On a Tauberian theorem for the weighted mean method of summability, Kuwait J. Sci., 42, № 3, 1–9 (2015).
U. StadtmÜller, Tauberian theorems for weighted means of double sequences, Anal. Math., 25, № 1, 57–68 (1999). DOI: https://doi.org/10.1007/BF02908426
H. Tietz, K. Zeller, Tauber-Sätze fÜr bewichtete Mittel, Arch. Math. (Basel), 68, № 3, 214–220 (1997). DOI: https://doi.org/10.1007/s000130050051
Ü. Totur, İ. Çanak, Some general Tauberian conditions for the weighted mean summability method, Comput. Math. Appl., 63, № 5, 999–1006 (2012). DOI: https://doi.org/10.1016/j.camwa.2011.12.005
This work is licensed under a Creative Commons Attribution 4.0 International License.