On the cardinality of a reduced unique range set
Abstract
UDC 517.5
Two meromorphic functions are said to share a set $S\subset \mathbb{C}\cup\{\infty\}$ ignoring multiplicities (IM) if $S$ has the same pre-images under both functions.
If any two nonconstant meromorphic functions, sharing a set IM, are identical, then the set is called a “reduced unique range set for meromorphic functions'' (in short, RURSM or URSM-IM).
From the existing literature, it is known that there exists a RURSM with seventeen elements. In this article, we reduced the cardinality of an existing RURSM and established that there exists a RURSM with fifteen elements. Our result gives an affirmative answer to the question of L. Z. Yang
(Int. Soc. Anal., Appl., and Comput., 7, 551–564 (2000)).
References
S. Bartels, Meromorphic functions sharing a set with 17 elements ignoring multiplicities, Complex Variables, Theory and Appl., 39 , 85 – 92 (1999), https://doi.org/10.1080/17476939908815183 DOI: https://doi.org/10.1080/17476939908815183
M. L. Fang, H. Guo, On unique range sets for meromorphic or entire functions, Acta Math. Sin. (New Ser.), 14 , № 4, 569 – 576 (1998), https://doi.org/10.1007/BF02580416 DOI: https://doi.org/10.1007/BF02580416
G. Frank, M.Reinders, A unique range set for meromorphic function with 11 elements, Complex Variables, Theory and Appl., 37 , № 1-4, 185 – 193 (1998), https://doi.org/10.1080/17476939808815132 DOI: https://doi.org/10.1080/17476939808815132
H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math, 122 , № 6, 1175 – 1203 (2000).
H. Fujimoto, On uniqueness polynomials for meromorphic functions, Nagoya Math. J., 170 , № 6, 33 – 46 (2003), https://doi.org/10.1017/S0027763000008527 DOI: https://doi.org/10.1017/S0027763000008527
F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton, Ky (1976); Lect. Notes Math., 599 , 51 – 69 (1977).
F. Gross, C. C. Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acad., 58, № 1, 17 – 20 (1982).
W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford (1964).
P. C. Hu, P. Li, C. C. Yang, Unicity of meromorphic mappings, Springer, https://doi.org/10.1007/978-1-4757-3775-2 DOI: https://doi.org/10.1007/978-1-4757-3775-2
P. Li, C. C. Yang, Some further results on the unique range set of meromorphic functions, Kodai Math. J., 18 , № 3, 437 – 450 (1995), https://doi.org/10.2996/kmj/1138043482 DOI: https://doi.org/10.2996/kmj/1138043482
P. Li, C. C. Yang, On the unique range set for meromorphic functions, Proc. Amer. Math. Soc., 124 , № 1, 177 – 185 (1996), https://doi.org/10.1090/S0002-9939-96-03045-6 DOI: https://doi.org/10.1090/S0002-9939-96-03045-6
M. Reinders, Unique range sets ignoring multiplicities, Bull. Hong Kong Math. Soc., 1 , № 2, 339 – 341 (1997).
C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Acad. Publ. (2003), https://doi.org/10.1007/978-94-017-3626-8 DOI: https://doi.org/10.1007/978-94-017-3626-8
L. Z. Yang, Some recent progress in the uniqueness theory of meromorphic functions, Proc. Second ISAAC Congr., Int. Soc. Anal., Appl. and Comput., 7 , 551 – 565 (2000), https://doi.org/10.1007/978-1-4613-0269-8_64 DOI: https://doi.org/10.1007/978-1-4613-0269-8_64
H. X. Yi, Unicity theorems for meromorphic and entire functions III, Bull. Austrl. Math. Soc., 53 , № 1, 71 – 82 (1996), https://doi.org/10.1017/S0004972700016737 DOI: https://doi.org/10.1017/S0004972700016737
H. X. Yi, The reduced unique range sets for entire or meromorphic functions, Complex Variables, Theory and Appl., 32 , № 3, 191 – 198 (1997), https://doi.org/10.1080/17476939708814990 DOI: https://doi.org/10.1080/17476939708814990
H. X. Yi, On the reduced range sets for meromorphic functions, J. Shandomg Univ., 33 , № 4, 361 – 368 (1998).
Copyright (c) 2020 B. Chakraborty
This work is licensed under a Creative Commons Attribution 4.0 International License.