One-dimensional inverse problems of finding the kernel of the integro-differential heat equation in a bounded domain

  • D. K. Durdiev Bukhara, edition of the Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan
  • Zh. Zh. Zhumaev Bukhara State University, Uzbekistan
Keywords: : integro-differential equation, inverse problem, kernel, resolvent, contraction mapping principle

Abstract

UDC 517.958

We consider the integro-differential heat equation with a time convolution integral on the right-hand side. The direct problem is an initial-boundary problem for the integro–differential equation. We study two inverse problems for this direct problem, which consist in finding the kernel of the integral term provided that two additional conditions on the solution of the direct problem are given. These problems are replaced with equivalent systems of integral equations with respect to unknown functions and, using the contraction mapping principle, we prove the unique solvability of the inverse problems.

Author Biography

Zh. Zh. Zhumaev , Bukhara State University, Uzbekistan

 

 

 

References

V.G. Romanov , Inverse Problems of Mathematical Physics, Moscow: Nauka, 1984, -264 p. (in Russian), Nauka, Moskva (1984)

A. Lorenzi , E. Sinestrari , An inverse problem in the theory of materials with memory, Nonlinear

Anal., TMA Vol.12, 411 – 423 (1988) DOI: https://doi.org/10.1177/014662168801200409

D. K. Durdiev, An inverse problem for a three-dimensional wave equation in the medium with memory (in Russian), Math. Anal. and Discrete Math., Novosibirsk, NGU, 19 – 26 (1989)

D. K. Durdiev, Question of well-posedness of a certain inverse problem for a hyperbolic integro- differential equation (in Russian), Sib. Mat. Zh., 33, № 3, 427 – 433 (1992), https://doi.org/10.1007/BF00970890 DOI: https://doi.org/10.1007/BF00970890

C. Cavaterra, M. Grasselli, Identifying memory kernels in linear thermoviscoelas-ticity of Boltzmann type, Math. Models and Methods Appl. Sci., 4, № 6, 807 – 842 (1994), https://doi.org/10.1142/S0218202594000455 DOI: https://doi.org/10.1142/S0218202594000455

K. Karuppiah, J. K. Kim, K. Balachandran, Parameter identification of an integro-differential equation, Nonlinear Funct. Anal. and Appl., 20, № 2, 169 – 185 (2015).

D. K. Durdiev, Zh. Zh. Zhumaev, Problem of determining a multidimensional thermal memory in a heat conductivity equation, Methods Funct. Anal. and Topology, 25, № 3, 219 – 226 (2019), https://doi.org/10.1134/s0202289319030101 DOI: https://doi.org/10.1134/S0202289319030101

Д. К. Дурдиев, А. С. Рашидов, Обратная задача определения ядра в одном интегро-дифференциальном

уравнении параболического типа, Дифференц. уравнения,

D.K. Durdiev, A. Sh. Rashidov, Inverse problem of determining the kernel in an integro-differential equation of parabolic type (In Russian), Differential Equations, 50, № 1, 110 – 116 (2014). , https://doi.org/10.1134/S0012266114010145 DOI: https://doi.org/10.1134/S0012266114010145

D.K. Durdiev, On the uniqueness of kernel determination in the integro-differential equation of parabolic type (In Russian), Samara State Tech. Univ., Ser. Phys. Math. Sci., 19, № 4, 658 – 666 (2015), https://doi.org/10.14498/vsgtu1444 DOI: https://doi.org/10.14498/vsgtu1444

J. Janno, L. V. Wolfersdorf, Inverse problems for identification of memory kernels in heat flow, Ill-Posed Problems, 4, № 1, 39 – 66 (1996), https://doi.org/10.1515/jiip.1996.4.1.39 DOI: https://doi.org/10.1515/jiip.1996.4.1.39

A. N. Tikhonov, A. A. Samarsky, Equations of Mathematical Physics (in Russian), Moscow: Nauka, 735 p. (1977).

Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis (In Russian), Moscow: Nauka (1972)

Published
23.11.2021
How to Cite
DurdievD. K., and Zhumaev Z. Z. “One-Dimensional Inverse Problems of Finding the Kernel of the Integro-Differential Heat Equation in a Bounded Domain”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 11, Nov. 2021, pp. 1492 -06, doi:10.37863/umzh.v73i11.6060.
Section
Research articles