Some simplest integral equalities equivalent to the Riemann hypothesis
Abstract
UDC 511.3
We show that the following integral equalities are equivalent to the Riemann hypothesis for any real $a>0$ and any real $0<\epsilon<1,$ $\epsilon \neq 1$:\begin{gather*}\int\limits_{-\infty}^{\infty}\frac{\ln\left(\zeta\left(\dfrac{1}{2}+it\right)\right)}{a+it}\,dt=-2\pi\ln\frac{a+\dfrac{1}{2}}{a}, \\ \int\limits_{-\infty}^{\infty}\frac{\ln\left(\zeta\left(\dfrac{1}{2}+it\right)\right)}{(a+it)^\epsilon}\,dt=-\frac{2\pi}{1-\epsilon}\left(\left(a+\frac{1}{2}\right)^{1-\epsilon}-a^{1-\epsilon}\right).\end{gather*}
References
S. K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann $zeta$-function and equivalent to the Riemann hypothesis, Ukr. Math. J., 64, № 2, 218 – 228 (2012). DOI: https://doi.org/10.1007/s11253-012-0642-0
S. K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann $zeta$-function with exponential weight which are equivalent to the Riemann hypothesis, Int. J. Anal., 2015, Article~980728 (2015). DOI: https://doi.org/10.1155/2015/980728
S. K. Sekatskii, S. Beltraminelli, D. Merlini, A few equalities involving integrals of the logarithm of the Riemann $zeta $-function and equivalent to the Riemann hypothesis I, II, III}; arXiv: 0806.1596v1, 0904.1277v1, 1006.0323v1.
E. C. Titchmarsh, E. R. Heath-Brown, The theory of the Riemann Zeta-function, Clarendon Press, Oxford (1988).
M. Balazard, E. Saias, M. Yor, Notes sur la fonction de Riemann, Adv. Math., 143, 284 – 287 (1999). DOI: https://doi.org/10.1006/aima.1998.1797
V. V. Volchkov, On an equality equivalent to the Riemann hypothesis, Ukr. Math. J., 47, № 4, 491 – 493 (1995). DOI: https://doi.org/10.1007/BF01056314
R. J. Backlund, "{U}ber die Nullstellen der Riemannschen Zetafunktion, Acta Math., 41, 345 – 375 (1918). DOI: https://doi.org/10.1007/BF02422950
I. S. Gradshtein, I. M. Ryzhik, Tables of integrals, series and products, Acad. Press, New York (1990).
Copyright (c) 2022 Sergey Sekatskii, Stefano Beltraminelli
This work is licensed under a Creative Commons Attribution 4.0 International License.