On the relations between some approaches to solving the Kirkwood – Salzburg equations
Abstract
UDC 517.9
This work is almost a review describing the solutions of Kirkwood – Salsburg equations for correlation functions of a large canonical ensemble. We establish analytical relations between Ruelle’s operator approach described in detail in [Статистическая механика. Строгие результаты, Мир, Москва (1971)] and the approach by Minlos and Poghosyan presented in [Оценки функций Урселла, групповых функций и их производных, Теор. и мат. физика, 31, № 2, 199 – 213 (1977)]. Using methods of infinite-dimensional analysis, we suggest a more transparent description of the main results.
References
D. Ryue`l, Statisticheskaya mekhanika. Strogie rezul`taty`, Mir, Moskva (1971).
R. A. Minlos, S. K. Pogosyan, Oczenki funkczij Ursella, gruppovy`kh funkczij i ikh proizvodny`kh, Teor. i mat. fizika, 31, № 2, 199 – 213 (1977).
D. Ruelle, Correlation functions of classical gases, Ann. Phys., 25, № 1, 109 – 120 (1963), https://doi.org/10.1016/0003-4916(63)90336-1 DOI: https://doi.org/10.1016/0003-4916(63)90336-1
N. N. Bogolyubov, D. Ya. Petrina, B. I. Khaczet, Matematicheskoe opisanie ravnovesnogo sostoyaniya klassicheskikh sistem na osnove formalizma kanonicheskogo ansamblya, Teor. i mat. fizika, 1, № 2, 251 – 274 (1969).
N. N. Bogolyubov, B. I. Khaczet, O nekotory`kh matematicheskikh voprosakh teorii statisticheskogo ravnovesiya, Dokl. AN SSSR, 66, № 3, 321 – 324 (1949).
B. I. Khaczet, Asimptotichni rozkladi za stepenyami gustini funkcziyi rozpodilu sistem u stani statistichnoyi rivnovagi, Hayk. zap. Zhitomir. ped. in-tu, fiz.-mat. cep., 3, 113 – 139 (1956).
O. Penrose, Convergence of fugacity expansions for classical systems, Statistical Mechanics: Foundations and Applications, W.A. Benjamin, Inc., New York (1967).
R. Fernandez, A. Procacci, Cluster expansion for abstract polymer models. New bounds from an old approach, Commun. Math. Phys., 274, 123 – 140 (2007), https://doi.org/10.1007/s00220-007-0279-2 DOI: https://doi.org/10.1007/s00220-007-0279-2
S. Ramawadh, S. J. Tate, Virial expansion bounds through tree partition schemes, Online preprint, arXiv: 1501.00509 [math-ph] (2015).
Yu. G. Kondratiev, T. Pasurek, M. R¨ockner, Gibbs measures of continuous systems: an analytic approach, Rev. Math. Phys., 24, № 10, Article 1250026-1 (2012).
S. Albeverio, Y. G. Kondratiev, M. R¨ockner, Analysis and geometry on configuration spaces, J. Funct. Anal., 154, № 2, 444 – 500 (1998).
K. R. Parthasarathy, Probability measure on metric spaces. Probability and mathematical statistics, Acad. Press, New York, London (1967). DOI: https://doi.org/10.1016/B978-1-4832-0022-4.50006-5
R. L. Dobrushin, Opisanie sluchajnogo polya pri pomoshhi uslovny`kh veroyatnostej i usloviya ego regulyarnosti, Teor. veroyatnostej i ee primeneniya, 13, vy`p. 2, 201 – 229 (1968).
R. L. Dobrushin, Gibbsovskie polya. Obshhij sluchaj, Funkczion. analiz i pril., 3, vy`p. 1, 27 – 35 (1969).
O. E. Lanford, D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Commun. Math. Phys., 13, № 3, 194 – 215 (1969).
D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18, № 2, 127 – 159 (1970).
D. Ya. Petrina, V. I. Gerasimenko, P. V. Malyshev, Математические основы классической статистической механики (Russian) [[Mathematical foundations of classical statistical mechanics]] ``Naukova Dumka'', Kiev (1985) trans. Gordon and Breach, New York (1995).
T. Kuna, Studies in configuration space analysis and applications, PhD Thesis, Univ. Bonn (1999).
O. L. Rebenko, V. A. Bolukh, Neskinchennovimirnij analiz i statistichna mekhanika, Zb. pracz` In-tu matematiki NAN Ukrayini, 11, № 1, 257 – 315 (2014).
N. N. Bogolyubov, Problemy` dinamicheskoj teorii v statisticheskoj fizike, Gostekhizdat, Moskva (1946).
Yu. M. Berezanskiĭ, Yu. G. Kondratʹev, Спектральные методы в бесконечномерном анализе (Russian) [[Spectral methods in infinite-dimensional analysis]], Naukova Dumka, Kiev, (1988); trans. Kluwer Acad. Publ., Dordrecht (1995).
T. C. Dorlas, A. L. Rebenko, B. Savoie, Correlation of clusters: partially truncated correlation functions and their decay, J. Math. Phys., 61, № 3, Article 033301 (2020), https://doi.org/10.1063/1.5092615 DOI: https://doi.org/10.1063/1.5092615
Copyright (c) 2021 Олексій Лукич Ребенко
This work is licensed under a Creative Commons Attribution 4.0 International License.