Про зв’язок деяких підходів до розв’язання рівнянь Кірквуда – Зальцбурга

  • О. Л. Ребенко Iн-т математики НАН України, Київ

Анотація

УДК 517.9
Робота має напiвоглядовий характер опису розв’язкiв рiвнянь Кiрквуда – Зальцбурга для кореляцiйних функцiй великого канонiчного ансамблю. Встановлено аналiтичний зв’язок мiж операторним пiдходом Д. Рюеля, який детально описано у гл. 4 монографiї [Статистическая механика. Строгие результаты, Мир, Москва (1971)] i пiдходом, запропонованим Р. А. Мiнлосом i С. К. Погосяном у роботi [Оценки функций Урселла, групповых функций и их производных, Теор. и мат. физика, 31, № 2, 199 – 213 (1977)]. На основi методiв нескiнченновимiрного аналiзу наведено бiльш прозорий опис основних результатiв.

Посилання

D. Ryue`l, Statisticheskaya mekhanika. Strogie rezul`taty`, Mir, Moskva (1971).

R. A. Minlos, S. K. Pogosyan, Oczenki funkczij Ursella, gruppovy`kh funkczij i ikh proizvodny`kh, Teor. i mat. fizika, 31, № 2, 199 – 213 (1977).

D. Ruelle, Correlation functions of classical gases, Ann. Phys., 25, № 1, 109 – 120 (1963), https://doi.org/10.1016/0003-4916(63)90336-1 DOI: https://doi.org/10.1016/0003-4916(63)90336-1

N. N. Bogolyubov, D. Ya. Petrina, B. I. Khaczet, Matematicheskoe opisanie ravnovesnogo sostoyaniya klassicheskikh sistem na osnove formalizma kanonicheskogo ansamblya, Teor. i mat. fizika, 1, № 2, 251 – 274 (1969).

N. N. Bogolyubov, B. I. Khaczet, O nekotory`kh matematicheskikh voprosakh teorii statisticheskogo ravnovesiya, Dokl. AN SSSR, 66, № 3, 321 – 324 (1949).

B. I. Khaczet, Asimptotichni rozkladi za stepenyami gustini funkcziyi rozpodilu sistem u stani statistichnoyi rivnovagi, Hayk. zap. Zhitomir. ped. in-tu, fiz.-mat. cep., 3, 113 – 139 (1956).

O. Penrose, Convergence of fugacity expansions for classical systems, Statistical Mechanics: Foundations and Applications, W.A. Benjamin, Inc., New York (1967).

R. Fernandez, A. Procacci, Cluster expansion for abstract polymer models. New bounds from an old approach, Commun. Math. Phys., 274, 123 – 140 (2007), https://doi.org/10.1007/s00220-007-0279-2 DOI: https://doi.org/10.1007/s00220-007-0279-2

S. Ramawadh, S. J. Tate, Virial expansion bounds through tree partition schemes, Online preprint, arXiv: 1501.00509 [math-ph] (2015).

Yu. G. Kondratiev, T. Pasurek, M. R¨ockner, Gibbs measures of continuous systems: an analytic approach, Rev. Math. Phys., 24, № 10, Article 1250026-1 (2012).

S. Albeverio, Y. G. Kondratiev, M. R¨ockner, Analysis and geometry on configuration spaces, J. Funct. Anal., 154, № 2, 444 – 500 (1998).

K. R. Parthasarathy, Probability measure on metric spaces. Probability and mathematical statistics, Acad. Press, New York, London (1967). DOI: https://doi.org/10.1016/B978-1-4832-0022-4.50006-5

R. L. Dobrushin, Opisanie sluchajnogo polya pri pomoshhi uslovny`kh veroyatnostej i usloviya ego regulyarnosti, Teor. veroyatnostej i ee primeneniya, 13, vy`p. 2, 201 – 229 (1968).

R. L. Dobrushin, Gibbsovskie polya. Obshhij sluchaj, Funkczion. analiz i pril., 3, vy`p. 1, 27 – 35 (1969).

O. E. Lanford, D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Commun. Math. Phys., 13, № 3, 194 – 215 (1969).

D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18, № 2, 127 – 159 (1970).

D. Ya. Petrina, V. I. Gerasimenko, P. V. Malyshev, Математические основы классической статистической механики (Russian) [[Mathematical foundations of classical statistical mechanics]] ``Naukova Dumka'', Kiev (1985) trans. Gordon and Breach, New York (1995).

T. Kuna, Studies in configuration space analysis and applications, PhD Thesis, Univ. Bonn (1999).

O. L. Rebenko, V. A. Bolukh, Neskinchennovimirnij analiz i statistichna mekhanika, Zb. pracz` In-tu matematiki NAN Ukrayini, 11, № 1, 257 – 315 (2014).

N. N. Bogolyubov, Problemy` dinamicheskoj teorii v statisticheskoj fizike, Gostekhizdat, Moskva (1946).

Yu. M. Berezanskiĭ, Yu. G. Kondratʹev, Спектральные методы в бесконечномерном анализе (Russian) [[Spectral methods in infinite-dimensional analysis]], Naukova Dumka, Kiev, (1988); trans. Kluwer Acad. Publ., Dordrecht (1995).

T. C. Dorlas, A. L. Rebenko, B. Savoie, Correlation of clusters: partially truncated correlation functions and their decay, J. Math. Phys., 61, № 3, Article 033301 (2020), https://doi.org/10.1063/1.5092615 DOI: https://doi.org/10.1063/1.5092615

Опубліковано
19.03.2021
Як цитувати
РебенкоО. Л. «Про зв’язок деяких підходів до розв’язання рівнянь Кірквуда – Зальцбурга». Український математичний журнал, вип. 73, вип. 3, Березень 2021, с. 381 -94, doi:10.37863/umzh.v73i3.6337.
Розділ
Статті