Hom–Jordan–Malcev–Poisson algebras
Abstract
UDC 512.5
We provide and study a Hom-type generalization of Jordan–Malcev–Poisson algebras called Hom–Jordan–Malcev–Poisson algebras. We show that they are closed under twisting by suitable self-maps and give a characterization of admissible Hom–Jordan–Malcev–Poisson algebras. In addition, we introduce the notion of pseudo-Euclidian Hom–Jordan–Malcev–Poisson algebras and describe its $T^*$-extension. Finally, we generalize the notion of Lie–Jordan–Poisson triple system to the Hom setting and establish its relationships with Hom–Jordan–Malcev–Poisson algebras.
References
A. A. Albert, On the power-associativity of rings, Summa Brazil. Math., 2, 21–32 (1948).
S. Attan, A. N. Issa, Hom–Lie triple system and Hom-Bol algebra structures on Hom-Maltsev and right Hom-alternative algebras, Int. J. Math. and Math. Sci., 2018, (2018). DOI: https://doi.org/10.1155/2018/4528685
M. Ait Ben Haddou, S. Benayadi, S. Boulmane, Malcev–Poisson-Jordan algebras, J. Algebra and Appl., 15, No. 9, Article 1650159 (2016). DOI: https://doi.org/10.1142/S0219498816501590
J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $sigma$-derivations, J. Algebra, 295, 314–361 (2006). DOI: https://doi.org/10.1016/j.jalgebra.2005.07.036
F. Kubo, Finite-dimensional non-commutative Poisson algebras, J. Pure and Appl. Algebra, 113, 307–314 (1996). DOI: https://doi.org/10.1016/0022-4049(95)00151-4
A. Makhlouf, Hom-alternative algebras and Hom–Jordan algebras, Int. Electron. J. Algebra, 8, 177–190 (2010).
A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory and Appl., 2, 51–64 (2008). DOI: https://doi.org/10.4303/jglta/S070206
A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra and Appl., 9, 1–37 (2010). DOI: https://doi.org/10.1142/S0219498810004117
I. P. Shestakov, Speciality problem for Malcev algebras and Poisson–Malcev algebras, Nonassociative Algebra and its Applications, Lecture Notes in Pure and Appl. Math., vol. 211, Dekker, New York (2000), p. 365–371. DOI: https://doi.org/10.1201/9780429187674-34
D. Yau, Power Hom-associative algebras}; arXiv:1007.4118.
D. Yau, Hom–Malcev, Hom-alternative and Hom–Jordan algebras, Int. J. Algebra, 11, 177–217 (2012).
Copyright (c) 2022 Abdenacer Makhlouf
This work is licensed under a Creative Commons Attribution 4.0 International License.