On a particular case of motion in the three-body problem
Abstract
UDC 531.36; 531.011
We study the three-body problem in a particular case where two bodies have equal masses, which implies the existence of a manifold of symmetric motions. We are looking for the conditions of existence of bounded (unbounded) symmetric motions.
Our analysis of boundedness (unboundedness) of motions shows that both the structure of the manifold of symmetrical motions and the integrals of energy and angular momentum are essential.
References
K. A. Sitnikov, Sushchestvovanie oscilliruyushchih dvizhenij v zadache trekh tel, Dokl. AN SSSR,133, 303 – 306 (1960).
J. Chazy, Sur l'allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment. (French) , Ann. Sci. École Norm. Sup.39, 29 – 130 (1922). DOI: https://doi.org/10.24033/asens.739
V. M. Alekseev, Lekcii po nebesnoj mekhanike, RHD, Izhevsk(2001).
J. Moser, Stable and random motion in dynamical system, Princeton University Press, Princeton (1973).
K. Marshal, Zadacha trekh tel, In-t komp'yut. issled., Moskva-Izhevsk(2004).
S. P. Sosnitskii, On the Lagrange stability of motion in the spatial elliptic restricted three-body problem, Astronom. J., 160 Issue 6, id.281, 6 pp. (2020), https://doi.org/10.3847/1538-3881/abc333 DOI: https://doi.org/10.3847/1538-3881/abc333
S. P. Sosnitskii, On the orbital stability of triangular Lagrangian motions in the three-body problem, Astronom. J., 136, 2533 – 2540 (2008), https://doi.org/10.1088/0004-6256/136/6/2533 DOI: https://doi.org/10.1088/0004-6256/136/6/2533
L. A. Pars, Analiticheskaya dinamika, Nauka, Moskva (1971).
V. I. Arnol'd, V. V. Kozlov, A. I. Nejshtadt, Matematicheskie aspekty klassicheskoj i nebesnoj mekhaniki, URSS, Moskva (2002).
S. P. Sosnitskii, On the bounded symmetrical motions in the three-body problem, Int. J. Non-Linear Mech., 67, 34 – 38 (2014), https://doi.org/10.1016/J.IJNONLINMEC.2014.08.001 DOI: https://doi.org/10.1016/j.ijnonlinmec.2014.08.001
V. G. Golubev, E. A. Grebennikov, Problema trekh tel v nebesnoj mekhanike, Izd-vo Mosk. gos. un-ta (1985).
S. P. Sosnic'kij, Pro deyaki osoblivosti simetrichnih ruhiv u zadachi tr'oh til, Zb. prac' In-tu matematiki NAN Ukraїni,10, № 3, 178 – 190 (2013).
A. E. Roj, Dvizhenie po orbitam, Nauka, Moskva (1981).
G. Mittag – Leffler, Zur biographie von Weierstrass, Acta Math., 35, 29 – 65 (1912), https://doi.org/10.1007/BF02418812 DOI: https://doi.org/10.1007/BF02418812
Copyright (c) 2021 Stepan
This work is licensed under a Creative Commons Attribution 4.0 International License.