Reduction of the two-dimensional thermoelasticity problems for solids with corner points to key integrodifferential equations

  • R. M. Kushnir Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Yu. V. Tokovyi Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • M. Y. Yuzvyak Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • A. V. Yasinskyi Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
Keywords: direct integration method, analytical solutions, two-dimensional problems, rectangular domain, annular sector, finite-length cylinder, integro-differential equations

Abstract

UDK 539.3

A generalization of the direct integration method is given with regard to solving the original equations of two-dimensional thermoelasticity problems for solids with corner points (i.e., plane problems for a rectangular domain and an annular sector and the axisymmetric problem for a solid cylinder of finite length). The problems are thereby reduced to a governing integrodifferential equation for a key function, which is unique for each problem. By making use of equilibrium equations, the expressions for stress-tensor components are derived in terms of the key function, while the complete sets of boundary conditions are identically reduced to the corresponding sets of integral conditions for the key function. The algorithms for separating variables in the derived governing equations are suggested by utilizing the complete sets of the eigen- and associated functions in order to construct the solutions to the formulated problems in the form of explicit dependencies on thermal loading in view of the boundary conditions.

References

V. M. Vihak, Rozviazok ploskoi zadachi termopruzhnosti dlia priamokutnoi oblasti, Dop. NAN Ukrainy,№ 12, 58 – 62 (1994).

V. M. Vihak, Rozviazuvannia ploskykh zadach pruzhnosti ta termopruzhnosti v priamokutnii oblasti, Mat. metody ta fiz.-mekh. polia,39, № 1, 19 – 25 (1996).

V. M. Vihak, R. Ye. Pasichnyk, Vidokremlennia zminnykh v intehro-dyferentsialnykh rivnianniakh visesymetrychnykh zadach termopruzhnosti dlia tsylindrychnykh oblastei, Dop. NAN Ukrainy, № 11, 52 – 57 (2000).

V. M. Vihak, M. I. Svyryda, Vidokremlennia zminnykh u rivnianniakh dvovymirnoi zadachi termopruzhnosti v napruzhenniakh dlia kiltsevoho sektora, Dopovidi NAN Ukrainy, № 2, 68 – 74 (1998).

V. T. Hrynchenko, Ravnovesye y ustanovyvshyesia kolebanyia upruhykh tel konechnykh razmerov, Naukova dumka, Kyev (1978).

V. B. M. Kalyniak, Yu. V. Tokovyi, A. V. Yasinskyi, Priami ta oberneni zadachi termomekhaniky stosovno optymizatsii ta identyfikatsii termonapruzhenoho stanu deformivnykh tverdykh til, Mat. metody ta fiz.-mekh. polia, 59, № 3, 28 – 42 (2016).

S. P. Tymoshenko, Dzh. Huder, Teoryia upruhosty, Nauka, Moskva (1975).

M. R. Eslami, R. B. Hetnarski, J. Ignaczak, N. Noda, N. Sumi, Y. Tanigawa, Theory of thermal stresses. Explanations, problems and solutions, Springer, Dordrecht (2013), https://doi.org/10.1080/01495739808956143 DOI: https://doi.org/10.1007/978-94-007-6356-2_20

R. Kushnir, A. Yasinskyy, Yu. Tokovyy, E. Hart, Inverse thermoelastic analysis of a cylindrical tribo-couple, Materials, 2021, 14. – ID: 2657, https://doi.org/10.3390/ma14102657 DOI: https://doi.org/10.3390/ma14102657

R. B. Hetnarski, M. R. Eslami, Thermal stresses, Adv. Theory and Appl., Springer, Dordrecht (2009), https://doi.org/10.1007/978-3-030-10436-8 DOI: https://doi.org/10.1007/978-3-030-10436-8

A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th edn., Cambridge Univ. Press, Cambridge (1927).

S. A. Lurie, V. V. Vasiliev, The biharmonic problem in the theory of elasticity, Gordon and Breach, Luxembourg (1995).

V. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev., 56, № 1, 33 – 85 (2003). DOI: https://doi.org/10.1115/1.1521166

V. V. Meleshko, Biharmonic problem in a rectangle, Applied Scientific Research, 58, № 1-4, 217 – 249 (1998), https://doi.org/10.1023/A:1000783619393 DOI: https://doi.org/10.1007/978-94-011-4986-0_14

Y. Tokovyy, C. C. Ma, The direct integration method for elastic analysis of Nonhomogeneous solids, Cambridge Scholars Publ., Newcastle (2021).

V. M. Vihak, Yu. V. Tokovyi, A. V. Rychahivskyy, Exact solution of the plane problem of elasticity in a rectangular region, J. Comput. Appl. Mech., 3, № 2, 193 – 206 (2002).

V. M. Vihak, A. V. Yasinskyy, Yu. V. Tokovyi, A. V. Rychahivskyy,Exact solution of the axisymmetric thermoelasticity problem for a long cylinder subjected to varying with-respect-to-length loads, J. Mech. Behavior Materials, 18, № 2, 141 – 148 (2007). DOI: https://doi.org/10.1515/JMBM.2007.18.2.141

V. M. Vihak, M. Y. Yuzvyak, A. V. Yasinskyy, The solution of plane thermoelasticiti problem for rectangular domain, J. Thermal Stresses, 21, № 5, 545 – 562 (1988), https://doi.org/10.1080/01495739808956162 DOI: https://doi.org/10.1080/01495739808956162

M. Yuzvyak, Yu. Tokovyy, A. Yasinskyy, Axisymmetric thermal stresses in an elastic hollow cylinder of finite length,J. Thermal Stresses, 44, № 3, 359 – 376 (2021), https://doi.org/10.1080/01495739.2020.1826376 DOI: https://doi.org/10.1080/01495739.2020.1826376

Published
11.10.2021
How to Cite
KushnirR. M., TokovyiY. V., YuzvyakM. Y., and YasinskyiA. V. “Reduction of the Two-Dimensional Thermoelasticity Problems for Solids With Corner Points to Key Integrodifferential Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 10, Oct. 2021, pp. 1355-67, doi:10.37863/umzh.v73i10.6784.
Section
Research articles