A note on variational formalism for sloshing with rotational flows in a rigid tank with an unprescribed motion
Abstract
UDC 517.9
The Bateman – Luke-type variational formulation of the free-boundary ‘sloshing’ problem is generalized to irrotational flows and unprescribed tank motions, i.e., to the case where both the tank and liquid motions should be found simultaneously for a given set of external forces applied to fixed points of the rigid tank body. We prove that the variational equation, which corresponds to the formulated problem, implies both the dynamic (force and moment) equations of the rigid body and the free-boundary problem, which describes sloshing in terms of the Clebsch potentials.
References
O. M. Faltinsen, A. N. Timokha, Sloshing, Cambridge Univ. Press (2009), ISBN: 9780521881111
I. A. Lukovsky, Nonlinear dynamics: mathematical models for rigid bodies with a liquid, De Gruyter (2015), ISBN: 978-3-11-031655-1; 978-3-11-038973-9
H. A. Ardakani, A coupled variational principle for 2D interactions between water waves and a rigid body containing fluid, J. Fluid Mech., 827, R2, 1-21 (2017), https://doi.org/10.1017/jfm.2017.517 DOI: https://doi.org/10.1017/jfm.2017.517
H. A. Ardakani, T. J. Bridges, F. Gay-Balmaz, Y. H. Huang, C. Tronci, A variational principle for fluid sloshing with vorticity, dynamically coupled to vessel motion, Proce. Roy. Soc. Edinburgh Sect. A, 475, Issue 22242019, Article 20180642 (2019), https://doi.org/10.1098/rspa.2018.0642 DOI: https://doi.org/10.1098/rspa.2018.0642
M. R. Turner, J. R. Rowe, Coupled shallow-water fluid sloshing in an upright annular vessel, J. Engrg. Math, 119, Issue 1, 43 – 67 (2019), https://doi.org/10.1007/s10665-019-10018-6 DOI: https://doi.org/10.1007/s10665-019-10018-6
O. M. Faltinsen, A. N. Tyimokha, Coupling between resonant sloshing and lateral motions of a two-dimensional rectangular tank, J. Fluid Mech., 916, A60, 1 – 41 (2021), https://doi.org/10.1017/jfm.2021.266 DOI: https://doi.org/10.1017/jfm.2021.266
P. Weidman, M. R. Turner, Experiments on the synchronous sloshing in suspended containers described by shallowwater theory, J. Fluids and Structures, 66, 331 – 349 (2016), https://doi.org/10.1016/j.jfluidstructs.2016.06.010 DOI: https://doi.org/10.1016/j.jfluidstructs.2016.06.010
O. M. Faltinsen, A. N. Timokha, An inviscid analysis of the Prandtl azimuthal mass-transport during swirl-type sloshing, J. Fluid Mech, 865, 884 – 903 (2019), https://doi.org/10.1017/jfm.2019.94 DOI: https://doi.org/10.1017/jfm.2019.94
A. N. Timokha, The Bateman – Luke variational formalism in a sloshing with rotational flows, Dopov. Nats. Akad. Nauk. Ukr., 18, № 4, 30 – 34 (2016), https://doi.org/10.15407/dopovidi2016.04.030 DOI: https://doi.org/10.15407/dopovidi2016.04.030
A. Clebsch, Über eine allgemeine Transformation der hydrodynamischen Gleichungen. (German), J. reine und angew. Math., 54, 293 – 313 (1857), https://doi.org/10.1515/crll.1857.54.293 DOI: https://doi.org/10.1515/crll.1857.54.293
A. Clebsch, Über die Integration der hydrodynamischen Gleichungen, J. reine und angew. Math., 56, 1 – 10 (1869), https://doi.org/10.1515/crll.1859.56.1 DOI: https://doi.org/10.1515/crll.1859.56.1
H. Bateman, Partial differential equations of mathematical physics, Dover Publications, New York (1944).
Copyright (c) 2021 Олександр Миколайович Тимоха, Іван Олександрович Луковський
This work is licensed under a Creative Commons Attribution 4.0 International License.