On the Gelfond – Leont’ev – Sǎlǎgean and Gelfond – Leont’ev – Ruscheweyh operators and analytic continuation of functions

  • M. M Sheremeta Lviv Ivan Franko National University
Keywords: Operators Gelfond – Leont’ev – Sălăgean, Operators Gelfond – Leont’ev – Ruscheweyh

Abstract

UDC 517.537

Let $A_{\lambda} (0)$ denote the class of power series $g(z) = \sum^{\infty}_{k=0} g^k z_k$ such that $|g_k| \leq \lambda_k| g_1|$ for all $k \geq 1$, where $\lambda = (\lambda_k)$ is a sequence of positive numbers. We obtain necessary and sufficient conditions imposed on a function $l$ and an increasing
sequence $(n_p)$ of non-negative integers ensuring that the assumption that the Gelfond – Leont’ev – Sălăgean derivative $D^{n_p}_{l,[S]}f $ and the Gelfond – Leont’ev – Ruscheweyh derivative $D^{n_p}_{l,[R]}f $ belong to the class $A_{\lambda} (0)$ for all $p \in {\Bbb Z}_+$ implies that f is an entire function.

References

A. O. Gel'fond, A. F. Leont'ev, Ob obobshchenii ryada Fur'e, Mat. sb., 29, № 3, 477 – 500 (1951).

G. St. Sălăgean, Subclasses of univalent functions, Lect. Notes Math., 1013, 362 – 372 (1983), https://doi.org/10.1007/BFb0066543 DOI: https://doi.org/10.1007/BFb0066543

St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49, 109 – 115 (1975), https://doi.org/10.2307/2039801 DOI: https://doi.org/10.1090/S0002-9939-1975-0367176-1

M. M. Sheremeta, On the maximal terms of successive Gelfond – Leont’ev – Sălăgean and Gelfond – Leont’ev – Ruscheweyh derivatives of a function analytic in the unit disc, Mat. Stud., 37, № 1, 58 – 64 (2012).

M. M. Sheremeta, Hadamard composition of Gelfond – Leont’ev – Sălăgean and Gelfond – Leont’tev – Ruscheweyh derivatives of functions analytic in the unit disc, Mat. Stud., 54, № 2, 115 – 134 (2020). DOI: https://doi.org/10.30970/ms.54.2.115-134

S. M. Shah, S. Y. Trimble, Univalent functions with univalent derivatives, Bull. Amer. Math. Soc., 75, 153 – 157 (1969), https://doi.org/10.1090/S0002-9904-1969-12186-5 DOI: https://doi.org/10.1090/S0002-9904-1969-12186-5

S. M. Shah, S. Y. Trimble, Univalent functions with univalent derivatives, III, J. Math. and Mech., 19, 451 – 460 (1969/1970), https://doi.org/10.1512/iumj.1970.19.19042 DOI: https://doi.org/10.1512/iumj.1970.19.19042

S. M. Shah, Analytic functions with univalent derivatives and entire functions of exponential type, Bull. Amer. Math. Soc., 78, № 2, 110 – 118 (1972), https://doi.org/10.1090/S0002-9904-1972-12900-8 DOI: https://doi.org/10.1090/S0002-9904-1972-12900-8

S. S. Miller, Problems in complex function theory, Complex Anal., Proc. S.U.N.Y. Brockport Conf., New York; Basel (1978), p. 167 – 177.

M. N. Sheremeta, O celyh funkciyah s odnolistnymi v kruge proizvodnymi, Ukr. mat. zhurn., 43, № 3, 400 – 406 (1991).

M. M. Sheremeta, Sprostuvannya odniey gipotezi Shaha pro odnolisti funkcij, Mat. stud., 2, 46 – 48 (1993).

M. N. Sheremeta, O stepennyh ryadah s udovletvoryayushchimi special'nomu usloviyu proizvodnymi Gel'fonda – Leont'eva, Mat. fizika, analiz, geometriya, 3, № 3/4, 423 – 445 (1996).

Louis de Branges, A proof of the Bieberbach conjecture, Acta Math., 154, 137 – 152 (1985), https://doi.org/10.1007/BF02392821 DOI: https://doi.org/10.1007/BF02392821

M. N. Sheremeta, O svyazi mezhdu rostom maksimuma modulya celoj funkcii i modulyami koefficientov ee stepennogo razlozheniya, Izv. vuzov. Matematika, № 2, 100 – 108 (1967).

Published
17.06.2022
How to Cite
Sheremeta M. M. “On the Gelfond – Leont’ev – Sǎlǎgean and Gelfond – Leont’ev – Ruscheweyh Operators and Analytic Continuation of Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 5, June 2022, pp. 717 -24, doi:10.37863/umzh.v74i5.7058.
Section
Research articles