Approximations of the Mittag-Leffler operator function with exponential accuracy and their application to solving of evolution equations with fractional derivative in time

  • I. P. Gavrilyuk Univ. Cooperative Education Gera-Eisenach, Eisenach, Germany
  • V. L. Makarov Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
Keywords: the operator Mittag-Leffler function, the Laguerre-Cayley functions, abstract time-fractional evolution equation, the Cayley transform, $N$-term approximation, exponential accuracy

Abstract

UDC 519.62

Наближення операторної функцiї Мiттаг-Леффлера з експоненцiальною точнiстю та їх застосування до розв’язування еволюцiйних рiвнянь з дробовою похiдною за часом

In the present paper we propose and analyse an efficient discretization of the operator Mittag-Leffler function $E_{1+\alpha } \left(-At^{1+\alpha } \right)=\sum _{k=0}^{\infty }\frac{(-At^{1+\alpha } )^{k} }{\Gamma (1+k(1+\alpha ))}$, where $A$ is a self-adjoint positive definite operator. This function possesses a broad field of applications, for example, it represents the solution operator for an evolution problem $\partial_t u +\partial_t^{-\alpha}A u=0, t>0, u(0)=u_0$ with a spatial operator $A$ and with the fractional time-derivative of the order $\alpha$ (in the Riemann-Liouville sense), i.e. $u(t)=E_{1+\alpha} \left(-At^{1+\alpha } \right) u_{0}$ .
We apply the Cayley transform method \cite{ag, agm} that allows to recursively separate the variables and to represent the Mittag-Leffler function as an infinite series of products of the Laguerre-Cayley functions of the time variable (polynomials of $t^{1+\alpha}$) and of the powers of the Cayley transform of the spatial operator. The approximate representation is the truncated series with $N$ terms. We study the accuracy of the $N$-term approximation scheme depending on $\alpha$ and $N$.

References

N. I. Akhieser, I. M. Glazman, Theory of linear operators in Hilbert space, Pitman Adv. Publ. Program, London (1980).

D. Z. Arov, I. P. Gavrilyuk, A method for solving initial value problems for linear differential equations in Hilbert space based on the Cayley transform, Numer. Funct. Anal. and Optim., 14, № 5-6, 456 – 473 (1993), https://doi.org/10.1080/01630569308816534 DOI: https://doi.org/10.1080/01630569308816534

A. Ashyralyev, A note on fractional derivatives and fractional powers of operators, J. Math. Anal. and Appl., 357, 232 – 236 (2009), https://doi.org/10.1016/j.jmaa.2009.04.012 DOI: https://doi.org/10.1016/j.jmaa.2009.04.012

D. Z. Arov, I. P. Gavrilyuk, V. L. Makarov, Representation and approximation of solution of initial value problems for differential equations in Hilbert space based on the Cayley transform, Elliptic and Parabolic Problems, Proc. 2nd Eur. Conf., Pont-a-Mousson, June 1994, Pitman Res. Notes Math. Ser. 325, 40 – 50 (1995).

H. Bateman, A. Erdelyi, Higher transcendental functions, vol. 2, MC Graw-Hill Book Co., New York etc. (1988).

R. Gorenflo, F. Mainardi, S. Rogosin, Mittag-Leffler function: properties and applications, Handbook of Fractional Calculus with Applications, vol. 1, Basic Theory, De Gruyter GmbH, Berlin, Boston, p. 269 – 296 (2019). DOI: https://doi.org/10.1515/9783110571622-011

I. P. Gavrilyuk, V. L. Makarov, Explicit and approximate solutions of second order evolution differential equations in Hilbert space, Numer. Methods Partial Different. Equat., 15, 111 – 131 (1999). DOI: https://doi.org/10.1002/(SICI)1098-2426(199901)15:1<111::AID-NUM6>3.0.CO;2-L

I. Gavrilyuk, V. Makarov, V. Vasylyk, Exponentially convergent algorithms for abstract differential equations, Springer, Basel AG (2011), https://doi.org/10.1007/978-3-0348-0119-5 DOI: https://doi.org/10.1007/978-3-0348-0119-5

I. P. Gavrilyuk, Strongly $P$ -positive operators and explicit representations of the solutions of initial value problems for second order differential equations in Banach space, J. Math. Anal. and Appl., 236, 327 – 349 (1999), https://doi.org/10.1006/jmaa.1999.6430 DOI: https://doi.org/10.1006/jmaa.1999.6430

I. P. Gavrilyuk, Super exponentially convergent approximation to the solution of the Schrodinger equation in abstract setting, Comput. Methods Appl. Math., 10, № 4, 345 – 358 (2010), https://doi.org/10.2478/cmam-2010-0020 DOI: https://doi.org/10.2478/cmam-2010-0020

I. P. Gavrilyuk, An algorithmic representation of fractional powers of positive operators, Numer. Funct. Anal. and Optim., 17, № 3-4, 293 – 305 (1996), https://doi.org/10.1080/01630569608816695 DOI: https://doi.org/10.1080/01630569608816695

I. P. Gavrilyuk, W. Hackbusch, B. N. Khoromskij, Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing, 74, № 2, 131 – 157 (2005), https://doi.org/10.1007/s00607-004-0086-y DOI: https://doi.org/10.1007/s00607-004-0086-y

I. P. Gavrilyuk, B. N. Khoromskij, Quasi-optimal rank-structured approximation to multidimensional parabolic problems by Cayley transform and Chebyshev interpolation, Comput. Methods Appl. Math., 191, 55 – 71 (2019), https://doi.org/10.1515/cmam-2018-0021 DOI: https://doi.org/10.1515/cmam-2018-0021

I. P. Gavrilyuk, V. L. Makarov, Exact and approximate solutions of some operator equations based on the Cayley transform, Linear Algebra and Appl., 282, 97 – 121 (1998), https://doi.org/10.1016/S0024-3795(98)10050-2 DOI: https://doi.org/10.1016/S0024-3795(98)10050-2

I. P. Gavrilyuk, V. L. Makarov, Representation and approximation of the solution of an initial value problem for a first order differential equation in Banach space, Z. Anal. Anwend., 15, № 2, 495 – 527 (1996), https://doi.org/10.4171/ZAA/712 DOI: https://doi.org/10.4171/ZAA/712

I. P. Gavrilyuk, V. L. Makarov, V. B. Vasylyk, Exponentially convergent method for abstract integro-differential equation with the fractional Hardy – Titchmarsh integral, Dop. Akad. Nauk Ukr. (to appear).

V. Havu, J. Malinen, The Cayley transform as a time discretization scheme, Numer. Funct. Anal. and Optim., 28, № 7-8, 825 – 851 (2007), https://doi.org/10.1080/01630560701493321 DOI: https://doi.org/10.1080/01630560701493321

H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011, Article ID 298628, (2011); https://doi.org/10.1155/2011/298628. DOI: https://doi.org/10.1155/2011/298628

W. McLean, V. Thomee, Numerical solution via Laplace transform of a fractional order evolution equation, J. Integral Equat. and Appl., 22, № 1, 57 – 94 (2010), https://doi.org/10.1216/JIE-2010-22-1-57 DOI: https://doi.org/10.1216/JIE-2010-22-1-57

G. M. Mittag-Leffler, Sur la nouvelle fonction Ealpha (z), C. R. Acad Sci., 137, 554 – 558 (1903).

G. H. Hardy, E. C. Titchmarsh, An integral equation, Proc. Phil. Soc., 28, № 2, 165 – 173 (1932). DOI: https://doi.org/10.1017/S0305004100010847

B. Jin, R. Lazarov, Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 62, 1 – 25 (2015), https://doi.org/10.1093/imanum/dru063 DOI: https://doi.org/10.1093/imanum/dru063

H.-J. Seybold, R. Hilfer, Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM J. Numer. Anal., 47, № 1, 69 – 88 (2008/2009). DOI: https://doi.org/10.1137/070700280

P. K. Suetin, Classical orthogonal polynomials, Nauka, Moscow (1979) (in Russian).

G. Szego, Orthogonal polynomials, Amer. Math. Soc., New York (1959).

Published
17.06.2022
How to Cite
Gavrilyuk , I. P., and V. L. Makarov. “Approximations of the Mittag-Leffler Operator Function With Exponential Accuracy and Their Application to Solving of Evolution Equations With Fractional Derivative in Time”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 5, June 2022, pp. 620 -34, doi:10.37863/umzh.v74i5.7097.
Section
Research articles