Gauss–Kuzmin problem for the difference Engel-series representation of real numbers
Abstract
UDC 511.7+517.5
Let $x=\Delta^{\overline{E}}_{g_1(x)\ldots g_n(x)\ldots}$ be the difference Engel-series representation of a real number $x\in\left(0;1\right]$ (${\overline{E}}$-representation), where $\Delta^{\overline{E}}_{g_1\ldots g_n\ldots}=\displaystyle\sum\nolimits_{n=1}^\infty\dfrac{1}{(2+g_1)\ldots(2+g_1+\ldots+g_n)},$ $\omega^n(x)=\Delta^{\overline{E}}_{g_{n+1}(x)g_{n+2}(x)\ldots}$ is an $n$-fold operator of left shift of digits in the $\overline{E}$-representation of the number $x$. For a sequence of sets $E_n(a)=\left\{x\colon x\in\left(0;1\right),\omega^n(x)<a\right\}$, where $a$ is a fixed parameter with $\left(0;1\right]$, it is proved that $\lim_{n\to\infty} \lambda\left(E_n(a)\right)=1$, where $\lambda(\cdot)$ is a Lebesgue measure. This problem is similar to the classical Gauss–Kuzmin problem for elementary continued fractions. However, their solutions are noticeably different.
References
B. I. Get'man, Zobrazhennya chisel s-adichnimi ryadami Engelya, Nauk. chasopis Nac. ped. un-tu im. M. P. Dragomanova. Ser. 1, Fiz.-mat. nauki, № 9, 212 – 224 (2008).
B. I. Get'man, Metrichni vlastivosti mnozhini chisel, viznachenih umovami na їh rozkladi v ryad Engelya, Nauk. chasopis Nac. ped. un-tu im. M. P. Dragomanova. Ser. 1, Fiz.-mat. nauki, № 10, 88 – 99 (2009).
R. O. Kuz'min, Ob odnoj zadache Gaussa, Dokl. AN SSSR, 375 – 380 (1928).
M. V. Prac'ovitij, B. I. Get'man, Ryadi Engelya ta їh zastosuvannya, Nauk. chasopis Nac. ped. un-tu im. M. P. Dragomanova. Ser. 1, Fiz.-mat. nauki, № 7, 105 – 116 (2006).
A. YA. Hinchin, Cepnye drobi, Nauka, Moskva (1978).
P. Levy, Sur les lois de probabilité dont dependent les quotients complets et incomplets d'une fraction continue. (French), Bull. Soc. Math. France, 57, 178 – 194 (1929). DOI: https://doi.org/10.24033/bsmf.1150
Copyright (c) 2022 Микола Мороз
This work is licensed under a Creative Commons Attribution 4.0 International License.