The sharp bound of certain second Hankel determinants for the class of inverse of starlike functions with respect to symmetric points
Abstract
UDC 517.5
We investigate the sharp bound of certain coefficient functionals associated with a Hankel determinant of second kind for the inverse function, when $f$ belongs to the class of starlike functions with respect to symmetric points.
References
R. M. Ali, Coefficient of the inverse of strongly starlike functions, Bull. Malayas. Math. Sci. Soc., 26, 63–71 (2003).
P. L. Duren, Univalent functions, Grundlehren Math. Wiss., vol. 259, Springer, New York (1983).
T. Hayami, S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. and Anal., 4(52), 2573–2585 (2010).
A. L. P. Hern, A. Janteng, R. Omar, Hankel determinant $H_2(3)$ for certain subclasses of univalent functions, Math. and Stat., 8, № 5, 566–569 (2020); DOI: 10.13189/ms.2020.080510. DOI: https://doi.org/10.13189/ms.2020.080510
A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1, № 13, 619–625 (2007).
A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure and Appl. Math., 7, № 2, 1–5 (2006).
O. S. Kwon, A. Lecko, Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory, 18, 307–314 (2018). DOI: https://doi.org/10.1007/s40315-017-0229-8
R. J. Libera, E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85, № 2, 225–230 (1982). DOI: https://doi.org/10.1090/S0002-9939-1982-0652447-5
R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $mathcal{P}$, Proc. Amer. Math. Soc., 87, № 2, 251–257 (1983). DOI: https://doi.org/10.1090/S0002-9939-1983-0681830-8
Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen (1975).
T. Ramreddy, D. Vamshee Krishna, Hankel determinant for stalike and convex functions with respect to symmetric points, J. Indian Math. Soc., 79, № 1–4, 161–171 (2012).
B. Rath, K. S. Kumar, D. V. Krishna, G. K. S. Viswanadh, The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points, Mat. Stud., 58, 45–50 (2022). DOI: https://doi.org/10.30970/ms.58.1.45-50
B. Rath, K. S. Kumar, D. V. Krishna, A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order 1/2, Complex Anal. and Oper. Theory (2022); https://doi.org/10.1007/s11785-022-01241-8. DOI: https://doi.org/10.1007/s11785-022-01241-8
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11, 72–75 (1959). DOI: https://doi.org/10.2969/jmsj/01110072
Y. J. Sim, A. Lecko, D. K. Thomas, The second Hankel determinant for strongly convex and Ozaki close-to-convex functions, Ann. Mat. Pura ed Appl., 2515–2533 (2021); https://doi.org/10.1007/s10231-021-01089-3. DOI: https://doi.org/10.1007/s10231-021-01089-3
P. Zaprawa, On hankel determinant $H_2(3)$ for univalent functions, Results Math. (2018); DOI.org/10.1007/s00025-018-0854-1.
Copyright (c) 2023 Biswajit Rath, Sanjay Kumar K., VANI N., Vamshee Krishna D.
This work is licensed under a Creative Commons Attribution 4.0 International License.