On Hölder continuity of solutions of the Beltrami equations
Abstract
UDC 517.5
We consider the problem of local behavior of solutions of the Beltrami equations in arbitrary domains. We have found sufficient conditions for the complex coefficient of the Beltrami equation guaranteeing the existence of its Hölder continuous solution in an arbitrary domain. These results can be used in the boundary-value problems for the Beltrami equation, as well as in the hydromechanics of strongly anisotropic and inhomogeneous media.
References
V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation. A geometric approach, Dev. Math., 26, Springer, New York (2012). DOI: https://doi.org/10.1007/978-1-4614-3191-6
O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York (2009).
V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, On recent advances in the degenerate Beltrami equations, Ukr. Mat. Visn., 7, № 4, 467–515 (2010).
U. Srebro, E. Yakubov, The Beltrami equation, Handb. Complex Anal. Geom. Funct. Theory, 2, 555–597 (2005). DOI: https://doi.org/10.1016/S1874-5709(05)80016-2
F. W. Gehring, Extremal length definitions for the conformal capacity of rings in space, Comment. Math. Helv., 36, 42–46 (1961).
F. W. Gehring, Extremal length definitions for the conformal capacity in space, Michigan Math. J., 9, 137–150 (1962). DOI: https://doi.org/10.1307/mmj/1028998672
F. W. Gehring, Quasiconformal mappings, Complex Analysis and its Applications (Lectures, Internat. Sem., Trieste, 1975), 2, 213–268 (1976).
J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lect. Notes Math., 229, Springer-Verlag, Berlin etc. (1971). DOI: https://doi.org/10.1007/BFb0061216
S. Saks, Theory of the integral, Dover Publ. Inc., New York (1964).
M. Vuorinen, Conformal geometry and quasiregular mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin etc. (1988). DOI: https://doi.org/10.1007/BFb0077904
B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts Math., 19, Eur. Math. Soc., Zürich (2013). DOI: https://doi.org/10.4171/122
Copyright (c) 2023 Євген Олександрович Севостьянов, Володимир Рязанов, Руслан Салімов
This work is licensed under a Creative Commons Attribution 4.0 International License.