On semiperfect $a$-rings

  • Truong Thi Thuy Van Faculty of Basic Sciences, Vinh Long University of Technology Education, Nguyen Hue, Vinh Long, Vietnam
  • Ahmad M. Alghamdi Mathematics Department, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
  • Amnah Abdu Alkinani Department of Basic Science, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
Keywords: semiperfect ring, Nakayama permutation, automorphism-invariant module

Abstract

UDC 512.5

A ring is  called a right $a$-ring if  every right ideal is automorphism invariant.  We describe some properties of $a$-rings over  semiperfect rings.   It is shown that an  I-finite right $a$-ring  is a direct sum of a semisimple Artinian ring and a basic ring. It is also demonstrated that if $R$ is  an indecomposable (as a ring) I-finite right $a$-ring not  simple with nontrivial idempotents  such that  every minimal right ideal  is a right annihilator and  ${\rm Soc}(R_R)={\rm Soc}(_RR)$  is essential in $R_R$, then $R$ is a quasi-Frobenius ring and it is also  a right $q$-ring. 

References

A. N. Abyzov, T. C. Quynh, D. D. Tai, Dual automorphism-invariant modules over perfect rings, Siberian Math. J., 58, 743–751 (2017). DOI: https://doi.org/10.1134/S0037446617050019

A. Alahmadi, A. Facchini, N. K. Tung, Automorphism-invariant modules, Rend. Semin. Mat. Univ. Padova, 133, 241–259 (2015). DOI: https://doi.org/10.4171/rsmup/133-12

F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer-Verlag (1992). DOI: https://doi.org/10.1007/978-1-4612-4418-9

S. E. Dickson, K. R. Fuller, Algebras for which every indecompoable right module is invariant in its injective envolope, Pacific J. Math., 31, № 3, 655–658 (1969). DOI: https://doi.org/10.2140/pjm.1969.31.655

N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending modules, vol.~313, Longman, Harlow (1994).

D. A. Hill, Semi-perfect $q$-rings, Math. Ann., 200, 113–121 (1973). DOI: https://doi.org/10.1007/BF01435451

P. A. Guil Asensio, A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388, 101–106 (2013). DOI: https://doi.org/10.1016/j.jalgebra.2013.05.003

S. K. Jain, S. Mohamed, S. Singh, Rings in which every right ideal is quasiinjective, Pacific J. Math., 31, 73–79 (1969). DOI: https://doi.org/10.2140/pjm.1969.31.73

F. Karabacak, M. T. Koşan, T. C. Quynh, O. Taşdemir, On modules and rings in which complements are isomorphic to direct summands, Comm. Algebra, 50, 1154–1168 (2022). DOI: https://doi.org/10.1080/00927872.2021.1979026

F. Karabacak, M. T. Koşan, T. C. Quynh, D. D. Tai, O. Taşdemir, On NCS modules and rings, Comm. Algebra, 48, 5236–5246 (2020). DOI: https://doi.org/10.1080/00927872.2020.1784910

M. T. Koşan, T. C. Quynh, A. K. Srivastava, Rings with each right ideal automorphism-invariant, J. Pure and Appl. Algebra, 220, 1525–1537 (2016). DOI: https://doi.org/10.1016/j.jpaa.2015.09.016

M. T. Koşan, T. C. Quynh, Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls, Appl. Algebra Engrg., Comm. and Comput., 32, 385–397 (2021). DOI: https://doi.org/10.1007/s00200-021-00494-8

T. K. Lee, T. C. Quynh, The dual Schroder–Bernstein problem for modules, Comm. Algebra, 48, 3904–3915 (2020). DOI: https://doi.org/10.1080/00927872.2020.1751179

T. K. Lee, Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra and Appl., 12, Article 1250159 (2013). DOI: https://doi.org/10.1142/S0219498812501599

W. K. Nicholson, M. F. Yousif, Quasi-Frobenius rings, Cambridge Univ. Press (2003). DOI: https://doi.org/10.1017/CBO9780511546525

T. C. Quynh, M. T. Koşan, On automorphism-invariant modules, J. Algebra and Appl., 14, Article 1550074 (2015). DOI: https://doi.org/10.1142/S0219498815500747

T. C. Quynh, M. T. Koşan, L. V. Thuyet, On automorphism-invariant rings with chain conditions, Vietnam J. Math., 48, 23–29 (2020). DOI: https://doi.org/10.1007/s10013-019-00336-8

T. C. Quynh, M. T. Koşan, On ADS modules and rings, Comm. Algebra, 42, 3541–3551 (2014). DOI: https://doi.org/10.1080/00927872.2013.788185

A. K. Srivastava, A. A. Tuganbaev, P. A. Guil Asensio, Invariance of modules under automorphisms of their envelopes and covers, Cambridge Univ. Press (2021). DOI: https://doi.org/10.1017/9781108954563

D. T. Trang, M. T. Koşan, O. Taşdemir, T. C. Quynh, On modules and rings having large absolute direct summands, Comm. Algebra, 51, 4949–4961 (2023). DOI: https://doi.org/10.1080/00927872.2023.2223301

A. A. Tuganbaev, Automorphism-invariant modules, J. Math. Sci., 206, 694–698 (2015). DOI: https://doi.org/10.1007/s10958-015-2346-0

Published
03.07.2024
How to Cite
VanT. T. T., AlghamdiA. M., and AlkinaniA. A. “On Semiperfect $a$-Rings”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 6, July 2024, pp. 907–914, doi:10.3842/umzh.v76i5.7491.
Section
Research articles