Meromorphic functions sharing three values with their shift

  • Sujoy Majumder Department of Mathematics, Raiganj University, West Bengal, India
  • Pradip Das Department of Mathematics, Raiganj University, West Bengal, India
Keywords: meromorphic function; uniqueness theory; shared values; Nevanlinna theory; shift; difference.

Abstract

UDC 517.5

We discuss the  problem of uniqueness of a meromorphic function $f(z),$ which shares $a_1(z)$, $a_2(z),$ and $a_3(z)$ CM with its shift $f(z+c)$, where $a_1(z)$, $a_2(z),$ and $a_3(z)$ are three $c$-periodic distinct small functions of $f(z)$ and $c\in\mathbb{C}\setminus\{0\}$. The obtained result improves the recent result of Heittokangas et al. [Complex Var. and Elliptic Equat., 56, No. 1–4, 81–92 (2011)]  by dropping the assumption about the order of $f(z)$.  In addition, we introduce a way of characterizing elliptic functions in terms of meromorphic functions  sharing values with two of their shifts.  Moreover, we show by  a number of illustrating examples that  our results are,  in certain senses, best possible.

References

Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z +η)$ and difference equations in the complex plane, Ramanujian J., 16, № 1, 105–129 (2008). DOI: https://doi.org/10.1007/s11139-007-9101-1

G. G. Gundersen, K. Tohge, Unique range sets for polynomials or rational functions, Progress in Analysis, 235–246 (2003). DOI: https://doi.org/10.1142/9789812794253_0028

R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31, № 2, 463–478 (2006).

R. Halburd, R. Korhonen, K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 366, 4267–4298 (2014). DOI: https://doi.org/10.1090/S0002-9947-2014-05949-7

W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford (1964).

J. Heittokangas, R. Korhonen, I. Laine, J. Riepp, J. Zhang, Value sharing results for shifts of meromorphic functions and sufficient conditions for periodicity, J. Math. Anal. and Appl., 355, 352–363 (2009). DOI: https://doi.org/10.1016/j.jmaa.2009.01.053

J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. and Elliptic Equat., 56, № 1–4, 81–92 (2011). DOI: https://doi.org/10.1080/17476930903394770

K. Liu, I. Laine, A note on value distribution of difference polynomials, Bull. Aust. Math. Soc., 81, 353–360 (2010). DOI: https://doi.org/10.1017/S000497270900118X

R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48, 367–391 (1926). DOI: https://doi.org/10.1007/BF02565342

K. Niino, M. Ozawa, Deficiencies of an entire algebroid function, Kodai Math. Semin. Rep., 22, № 1, 98–113 (1970). DOI: https://doi.org/10.2996/kmj/1138846064

L. A. Rubel, C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Math., 599, 101–103 (1977). DOI: https://doi.org/10.1007/BFb0096830

K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192, 225–294 (2004). DOI: https://doi.org/10.1007/BF02392741

C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Acad. Publ., Dordrecht etc. (2003). DOI: https://doi.org/10.1007/978-94-017-3626-8

H. X. Yi, Unicity theorems for meromorphic functions that share three values, Kodai Math. J., 18, 300–314 (1995). DOI: https://doi.org/10.2996/kmj/1138043427

J. Zhang, H. Y. Kang, L. W. Liao, Entire functions sharing a small entire function with their difference operators, Bull. Iranian Math. Soc., 41, № 5, 1121–1129 (2015).

Published
03.07.2024
How to Cite
MajumderS., and DasP. “Meromorphic Functions Sharing Three Values With Their Shift”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 6, July 2024, pp. 877–889, doi:10.3842/umzh.v76i5.7502.
Section
Research articles