On the variational statement of one boundary-value problem with free interface

  • A. Timokha Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
Keywords: Bateman-Luke variational principle, Clebsch potentials, droplet

Abstract

UDC 532.595

With the help of Clebsch's potentials, we propose a Bateman–Luke-type variational principle  for a boundary-value problem with a free (unknown) interface between two ideal compressible barotropic fluids (liquid and gas)  admitting rotational flows.

References

I. A. Lukovskii, A. N. Timokha, Variational formulations of nonlinear boundary-value problems with a free boundary in the theory of interaction of surface waves with acoustic fields, Ukr. Math. J., 45, № 12, 1849–1860 (1993); DOI: 10.1007/BF01061355. DOI: https://doi.org/10.1007/BF01061355

M. O. Chernova, I. A. Lukovsky, A. N. Timokha, Differential and variational formalism for acoustically-levitating drops, J. Math. Sci., 220, № 3, 359–375 (2015); DOI: 10.1007/s10958-016-3189-z. DOI: https://doi.org/10.1007/s10958-016-3189-z

K. Pandey, D. Prabhakaran, S. Basu, Review of transport processes and particle self-assembly in acoustically levitated nanofluid droplets, Phys. Fluids, 31, № 11, Article 112102 (2019); DOI: 10.1063/1.5125059. DOI: https://doi.org/10.1063/1.5125059

H. Chen, A. Li, Y. Zhang, Z. Xiaoqiang, Evaporation and liquid-phase separation of ethanol-cyclohexane binary drops under acoustic levitation, Phys. Fluids, 34, № 9, Article 092108 (2022); DOI: 10.1063/5.0109520. DOI: https://doi.org/10.1063/5.0109520

A. N. Timokha, A note on the variational formalism for sloshing with rotational flows in a rigid tank with unprescribed motion, Ukr. Math. J., 73, № 10, 1580–1589 (2022); DOI: 10.1007/s11253-022-02015-3. DOI: https://doi.org/10.1007/s11253-022-02015-3

H. Bateman, Partial differential equations of mathematical physics, Dover Publ., New York (1944).

O. M. Faltinsen, A. N. Timokha, Sloshing, Cambridge Univ. Press (2009).

Published
30.08.2023
How to Cite
TimokhaA. “On the Variational Statement of One Boundary-Value Problem With Free Interface”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 8, Aug. 2023, pp. 1113 -18, doi:10.3842/umzh.v75i8.7650.
Section
Research articles