On the аsymptotics of solutions of stochastic differential equations with jumps
Abstract
UDC 519.21
Consider a one-dimensional stochastic differential equation with jumps $$dX(t) = a(X(t))dt + \sum_{k = 1}^m b_k(X(t-))dZ_k(t),$$ where $Z_k,$ $k \in \{1, 2, \ldots , m\},$ are independent centered L\'evy processes with finite second moments. We prove that if the coefficient $a(x)$ has a certain power asymptotics as $x \to \infty$ and the coefficients $b_k,$ $ k \in \{1, 2, \ldots , m\},$ satisfy certain growth condition, then a solution $X(t)$ has the same asymptotics as the solution of $d x(t) = a(x(t))d t$ as $t \to \infty$ a.s.
References
V. V. Buldygin, O. A. Tymoshenko, On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients, Theory Stoch. Process., 16, № 2, 12–22 (2010).
A. Friedman, Stochastic differential equations and applications, Courier Corp. (2012).
I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations and their applications, Naukova Dumka, Kiev (1982).
G. Keller, G. Kersting, U. Rösler, On the asymptotic behavior of solutions of stochastic differential equations, Z.~Wahrscheinlichkeitstheor. und verw. Geb., 68, 163–189 (1984). DOI: https://doi.org/10.1007/BF00531776
O. I. Klesov, O. A. Tymoshenko, Unbounded solutions of stochastic differential equations with time-dependent coefficients, Ann. Univ. Sci. Budapest. Sect. Comput., 41, 25–35 (2013).
H. Kunita, Stochastic ows and jump-diffusions, Springer (2019). DOI: https://doi.org/10.1007/978-981-13-3801-4
H. Kunita, S. Watanabe, On square integrable martingales, Nagoya Math. J., 30, 209–245 (1967). DOI: https://doi.org/10.1017/S0027763000012484
X. Mao, Exponential stability of stochastic differential equations, Marcel Dekker (1994).
I. Pavlyukevich, A. Pilipenko, Generalized Peano problem with Lévy noise, Electron. Commun. Probab., 25(85), 1–14 (2020). DOI: https://doi.org/10.1214/20-ECP365
A. Pilipenko, F. N. Proske, On perturbations of an ODE with non-Lipschitz coefficients by a small self-similar noise, Statist. Probab. Lett., 132, 62–73 (2018). DOI: https://doi.org/10.1016/j.spl.2017.09.005
A. Pilipenko, F. N. Proske, On a selection problem for small noise perturbation in the multidimensional case, Stochast. and Dyn., 18, № 6, Article 1850045 (2018). DOI: https://doi.org/10.1142/S0219493718500454
A. Samoilenko, O. Stanzhyts'kyi, I. Novak, On asymptotic equivalence of solutions of stochastic and ordinary equations, Ukr. Math. J., 63, № 8 (2012). DOI: https://doi.org/10.1007/s11253-012-0577-5
V. Yuskovych, On asymptotic behavior of stochastic differential equation solutions in multidimensional space; arXiv preprint arXiv:2306.02089, 2023.
Copyright (c) 2023 Віктор Юськович
This work is licensed under a Creative Commons Attribution 4.0 International License.