Bifurcation structure of interval maps with orbits homoclinic to a saddle-focus

  • Carter Hinsley Department of Mathematics and Statistics, Georgia State University, Atlanta, USA
  • James Scully Neuroscience Institute, Georgia State University, Atlanta, USA
  • Andrey L. Shilnikov Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, USA
Keywords: Interval map, Shilnikov homoclinic bifurcation, Belyakov bifurcation, Dynamical systems, Chaos, Ordinary Differential Equations

Abstract

UDC 517.9

We study homoclinic bifurcations in an interval map associated with a saddle-focus of (2, 1)-type in $Z_2$-symmetric systems. Our study of this map reveals a homoclinic structure of the saddle-focus, with bifurcation unfolding guided by the codimension-two Belyakov bifurcation. We consider three parameters of the map corresponding to the saddle quantity, splitting parameter, and the focal frequency of the smooth saddle-focus in a neighborhood of homoclinic bifurcations. We symbolically encode the dynamics of the map in order to find stability windows and locate homoclinic bifurcation sets in a computationally efficient manner. The organization and possible shapes of homoclinic bifurcation curves in the parameter space are examined, taking into account the symmetry and discontinuity of the map. Sufficient conditions for stability and local symbolic constancy of the map are presented. This study provides insights into the structure of homoclinic bifurcations of the saddle-focus map, furthering comprehension of low-dimensional chaotic systems.

References

A. N. Sharkovsky, On attracting and attracted sets, Sov. Math. Dokl., 6, 268–270 (1965).

A. N. Sharkovsky, A classification of fixed points, Amer. Math. Soc. Transl. Ser. 2, 159–179 (1970).

O. N. Sharkovsky, Y. L. Maistrenko, E. Y. Romanenko, Difference equations and their applications, Springer Sci. Ser.: Math. and Appl. (1993). DOI: https://doi.org/10.1007/978-94-011-1763-0

A. Blokh, O. N. Sharkovsky, Sharkovsky ordering, SpringerBriefs Math. (2022). DOI: https://doi.org/10.1007/978-3-030-99125-8

A. Arneodo, P. Coullet, C. Tresser, Possible new strange attractors with spiral structure, Commun. Math. Phys., 79, 573–579 (1981). DOI: https://doi.org/10.1007/BF01209312

T. Xing, K. Pusuluri, A. L. Shilnikov, Ordered intricacy of Shilnikov saddle-focus homoclinics in symmetric systems, Chaos, 31 (2021). DOI: https://doi.org/10.1063/5.0054776

V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, The origin and structure of the Lorenz attractor, Sov. Phys. Dokl., 22, 253–255 (1977).

V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, On the origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, 234, 336–339 (1977).

V. S. Afraimovich, L. P. Shilnikov, Nonlinear and turbulent processes in physics, Pitman Adv. Publ. Program (1983).

L. P. Shilnikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk, 160, 558–561 (1965).

L. P. Shilnikov, The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus, Sov. Math. Dokl., 8, № 1, 54–58 (1967).

L. P. Shilnikov, On the birth of a periodic motion from a trajectory bi-asymptotic to an equilibrium state of the saddle type, Math. Sb., 35, № 3, 240–264 (1968). DOI: https://doi.org/10.1070/SM1968v006n03ABEH001069

L. P. Shilnikov, A certain new type of bifurcation of multidimensional dynamic systems, Dokl. Akad. Nauk SSSR, 189, 59–62 (1969).

L. P. Shilnikov, A. L. Shilnikov, Shilnikov bifurcation, Scholarpedia; http://www.scholarpedia.org/article/Shilnikov_ bifurcation, 2, 1891e, revision #153014. DOI: https://doi.org/10.4249/scholarpedia.1891

V. S. Afraimovich, S. V. Gonchenko, L. M. Lerman, A. L. Shilnikov, D. V. Turaev, Scientific heritage of L. P. Shilnikov, Regular and Chaotic Dyn., 19, 435–460 (2014). DOI: https://doi.org/10.1134/S1560354714040017

S. V. Gonchenko, A. Kazakov, D. V. Turaev, A. L. Shilnikov, Leonid Shilnikov and mathematical theory of dynamical chaos, Chaos, 32 (2022). DOI: https://doi.org/10.1063/5.0080836

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics. Pts I and II, vol. 5, World Sci. Ser. Nonlinear Sci. Ser. A (1998, 2001). DOI: https://doi.org/10.1142/4221

I. Arnold, V. V. Afrajmovich, Y. Il'yashenko, L. P. Shilnikov, Dynamical systems V: bifurcation theory and catastrophe theory, vol. 5, Springer Sci. & Business Media (2013).

P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation, Phys. Lett. A, 97, 1–4 (1983). DOI: https://doi.org/10.1016/0375-9601(83)90085-3

L. A. Belyakov, A case of the generation of a periodic motion with homoclinic curves, Math. Notes Acad. Sci. USSR, 15, 336–341 (1974). DOI: https://doi.org/10.1007/BF01095124

L. A. Belyakov, The bifurcation set in a system with a homoclinic saddle curve, Math. Notes Acad. Sci. USSR, 28, 910–916 (1981). DOI: https://doi.org/10.1007/BF01709154

L. A. Belyakov, Bifurcations of systems with a homoclinic curve of the saddle-focus with a zero saddle value, Math. Notes Acad. Sci. USSR, 36, 838–843 (1985). DOI: https://doi.org/10.1007/BF01139930

I. M. Ovsyannikov, L. P. Shilnikov, On systems with a saddle-focus homoclinic curve, Mat. Sb., 130(172), 552–570 (1986).

I. M. Ovsyannikov, L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos, Math. Sb., 73, 415 (1992). DOI: https://doi.org/10.1070/SM1992v073n02ABEH002553

S. V. Gonchenko, D. V. Turaev, P. Gaspard, G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10, 409 (1997). DOI: https://doi.org/10.1088/0951-7715/10/2/006

V. S. Gonchenko, L. P. Shilnikov, On bifurcations of systems with homoclinic loops to a saddle-focus with saddle index $1/2$, Dokl. Math., 76, 929–933 (2007). DOI: https://doi.org/10.1134/S1064562407060300

S. Malykh, Y. Bakhanova, A. Kazakov, K. Pusuluri, A. L. Shilnikov, Homoclinic chaos in the R"ossler model, Chaos, 30 (2020). DOI: https://doi.org/10.1063/5.0026188

S. V. Gonchenko, L. P. Shil'nikov, D. V. Turaev, Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits, Chaos, 6, 15–31 (1996). DOI: https://doi.org/10.1063/1.166154

S. V. Gonchenko, L. P. Shil'nikov, D. V. Turaev, Quasiattractors and homoclinic tangencies, Comput. and Math. Appl., 34, 195–227 (1997). DOI: https://doi.org/10.1016/S0898-1221(97)00124-7

R. Barrio, F. Blesa, S. Serrano, A. L. Shilnikov, Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci, Phys. Rev. E, 84, Article 035201 (2011). DOI: https://doi.org/10.1103/PhysRevE.84.035201

R. Barrio, F. Blessa, S. Serrano, T. Xing, A. L. Shilnikov, Homoclinic spirals: theory and numerics, Progress and Challenges in Dyn. Syst., Springer Proc. Math. and Stat., 54, 11–24 (2013). DOI: https://doi.org/10.1007/978-3-642-38830-9_4

J. J. Scully, A. B. Neiman, A. L. Shilnikov, Measuring chaos in the Lorenz and Ro'ossler models: fidelity tests for reservoir computing, Chaos, 31, Article 093121 (2021). DOI: https://doi.org/10.1063/5.0065044

D. V. Turaev, L. P. Shilnikov, An example of a wild strange attractor, Sb. Math., 189, № 2, 291–314 (1998). DOI: https://doi.org/10.1070/SM1998v189n02ABEH000300

D. V. Turaev, L. P. Shil'nikov, Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors, Dokl. Math., 77, 17 (2008). DOI: https://doi.org/10.1134/S1064562408010055

C. Bonatto, J. A. Gallas, Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit, Phys. Rev. Lett., 101, Article 054101 (2008). DOI: https://doi.org/10.1103/PhysRevLett.101.054101

J. A. Gallas, The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows, Int. J. Bifur. and Chaos, 20, 197–211 (2010). DOI: https://doi.org/10.1142/S0218127410025636

R. Stoop, P. Benner, Y. Uwate, Real-world existence and origins of the spiral organization of shrimp-shaped domains, Phys. Rev. Lett., 105, Article 074102 (2010). DOI: https://doi.org/10.1103/PhysRevLett.105.074102

R. Vitolo, P. Glendinning, J. A. Gallas, Global structure of periodicity hubs in lyapunov phase diagrams of dissipative flows, Phys. Rev. E, 84, Article 016216 (2011). DOI: https://doi.org/10.1103/PhysRevE.84.016216

R. Barrio, A. L. Shilnikov, L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz chaos, Int. J. Bifur. and Chaos, 22, Article 1230016 (2012). DOI: https://doi.org/10.1142/S0218127412300169

T. Xing, J. Wojcik, R. Barrio, A. L. Shilnikov, Symbolic toolkit for chaos explorations, Int. Conf. Theory and Application in Nonlinear Dynamics (ICAND 2012), Springer, 129–140 (2014). DOI: https://doi.org/10.1007/978-3-319-02925-2_12

T. Xing, J. Wojcik, M. Zaks, A. L. Shilnikov, Fractal parameter space of Lorenz-like attractors: a hierarchical approach, Chaos, Information Processing and Paradoxical Games: The legacy of J. S. Nicolis, 1–14 (2014). DOI: https://doi.org/10.1142/9789814602136_0005

T. Xing, R. Barrio, A. L. Shilnikov, Symbolic quest into homoclinic chaos, Int. J. Bifur. and Chaos, 24, Article 1440004 (2014). DOI: https://doi.org/10.1142/S0218127414400045

K. Pusuluri, A. L. Shilnikov, Homoclinic chaos and its organization in a nonlinear optics model, Phys. Rev. E, 98, Article 040202 (2018). DOI: https://doi.org/10.1103/PhysRevE.98.040202

K. Pusuluri, A. Pikovsky, A. L. Shilnikov, Unraveling the chaos-land and its organization in the Rabinovich system, Advances in Dynamics, Patterns, Cognition, Springer (2017), p. 41–60. DOI: https://doi.org/10.1007/978-3-319-53673-6_4

K. Pusuluri, H. G. E. Meijer, A. L. Shilnikov, Homoclinic puzzles and chaos in a nonlinear laser model, J. Commun. Nonlinear Sci. and Numer. Simul. (2020). DOI: https://doi.org/10.1016/j.cnsns.2020.105503

A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory, 22, 75–81 (1976). DOI: https://doi.org/10.1109/TIT.1976.1055501

Published
02.01.2024
How to Cite
HinsleyC., ScullyJ., and ShilnikovA. L. “Bifurcation Structure of Interval Maps With Orbits Homoclinic to a Saddle-Focus”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 12, Jan. 2024, pp. 1608 -26, doi:10.3842/umzh.v75i12.7706.
Section
Research articles