Crossingless sheaves and their classes in the equivariant $K$-theory

  • Galyna Dobrovolska Department of Mathematics, Ariel University, Israel
Keywords: exotic t-structures, affine tangles

Abstract

UDC 517.9

We introduce crossingless sheaves in certain equivariant derived categories, which are analogous to the Bezrukavnikov–Mirkovic exotic sheaves for two-block nilpotents.  The classes of crossingless sheaves are computed in the equivariant  $K$-theory of Cautis–Kamnitzer varieties.

References

R. Anno, V. Nandakumar, Exotic $t$-structures for two-block Springer fibers; arXiv:1602.00768.

R. Bezrukavnikov, I. Mirkovic, D. Rumynin, Localization of modules for a semi-simple Lie algebra in prime characteristic, Ann. Math., 167, № 3, 945–991 (2008).

R. Bezrukavnikov, I. Mirkovic, Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution with an Appendix by E. Sommers, Ann. Math., 178, 835–919 (2013).

R. Bezrukavnikov, S. Riche, Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Ec. Norm. Sup'er. (4), 45, 535–599 (2012).

S. Cautis, J. Kamnitzer, Knot homology via derived categories of coherent sheaves. I. The ${sl}_2$-case, Duke Math. J., 142, № 3, 511–588 (2008).

S. Cautis, J. Kamnitzer, Quantum K-theoretic geometric Satake, the $SL(n)$ case, Compos. Math., 154, № 2, 275–327 (2018).

G. Dobrovolska, V. Nandakumar. D. Yang, Modular representations in type A with a two-row nilpotent central character}; arXiv:1710.08754v3.

I. Mirkovic, M. Vybornov, Quiver varieties and Beilinson–Drinfeld Grassmannians of type A; arXiv:0712.4160v2.

N. Reshetikhin, V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys., 127, 1–26 (1990).

Published
28.12.2024
How to Cite
Dobrovolska, G. “Crossingless Sheaves and Their Classes in the Equivariant $K$-Theory”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 12, Dec. 2024, pp. 1715–1726, doi:10.3842/umzh.v76i12.8083.
Section
Research articles