The Lyapunov theorem on convexity and its use for sign-embeddings

  • V. М. Kadets Kharkiv. Univ.
  • М. М. Popov Zaporizhzhia Univ.
Keywords: -

Abstract

It is proved (Theorem 1) that for a Banach space $X$ the following statements are equialent: i) the range of every $X$-valued $\sigma$-additive non-atomic measure of finite variation has convex closure; ii) $L_1$ does not sign-embed in $X$.

References

Liapunov A. A. On completely additive vector functions// Izv. Akad. Nauk SSSR.— 1940.— 4.— P. 465—478 (Rus.).

Diestel J., Uhl J. Vector measures// Math. Surveys 15, Amer.. Math. Soc., 1977.— 322 p.

Rosenthal H. P. Sign-embeddings of L1 // Leet. Notes Math.— 1983.— 995.— P. 155— 165.

Talagrand M. The three space problem for $L^1$ // J. Amer. Math. Soc.— 1990.— 3.— p. 9—29.

Plichko A. M., Popov M. M. Symmetric function spaces on atomless probability spaces// Rozpr. Mat.— 1990.— 306.— P. 1—86.

Ghoussoub N., Rosenthal H. P. Martingales, $G_delta$—embeddings and quotients of $L_1$ // Math. Ann.— 1983.— 264, N 3.— P. 321—332.

Kadets V. M., Kadets M. I. Rearrangements of series in Banach spaces.— Tartu: Tartu Univ., 1988.— 196 p. (Rus.).

Lindenstrauss J., Tzarziri L. Classical Banach spaces. I: Sequence spaces.— Berlin etc.: Springer, 1977.— 188 p.

Bourgain J. New classes of $L_p$ -spaces // Leet. Notes Math.—Berlin etc.: Springer, 1981.— 143 p.

Enflo P., Starbird T. IT. Subspaces of $L^1$ containing $L^1$ // Studia Math.— 1979.— 65, N 2.— P. 203—225.

Symmetric structures in Banach spaces / W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri // Mem. Amer. Math. Soc.— 1979.— 19, N 217.— 298 p.

Bourgain J., Rosenthal H. P. Applications of the theory of semi-embeddings to Banach space theory// J. Function. Anal.— 1983.— 52, N 2.— P. 149—188.

Rosenthal H. P. Embeddings of L1 in L1//Contemp. Math.— 1984.— 26.— P. 335— 349.

Maurey B., Pisier G. Series de variables aleatoires independantes et proprietes geometri-ques des espaces de Banach// Studia Math.— 1976.— 58, N 1.— P. 45—90.

Published
07.10.1992
How to Cite
Kadets V. М., and Popov М. М. “The Lyapunov Theorem on Convexity and Its Use for Sign-Embeddings ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 44, no. 9, Oct. 1992, pp. 1192-00, https://umj.imath.kiev.ua/index.php/umj/article/view/8169.
Section
Research articles