On the analog of the Sălăgean class for Dirichlet series and the solutions of one linear differential equation with exponential coefficients

  • M. Sheremeta Lviv Ivan Franko National University
  • O. Mulyava Kyiv National University of Food Technologies
  • M. Medvedev Tavria National University named after V. I. Vernadskyi

Abstract

UDC 517.537

In his study of the geometric properties of functions analytic in a disk ${\mathbb D} = \{z\colon |z|<1\},$ G. S. Sălăgean introduced a class $S_j(\alpha)$ of functions $f(z) = z + \sum _{k = 2}^{\infty}f_kz^k$ such that $\operatorname{Re} \frac{D^{j + 1}f(z)}{D^{j}f(z)} > \alpha\in [0, 1)$ for each $ z\in{\mathbb D},$ where $D^jf$ is the Sălăgean derivative. For Dirichlet series $F(s) = e^{s}-\sum _{k = 1 }^{\infty}f_k\exp\{s\lambda_k\}$ with $f_k\ge0$ absolutely convergent in the half plane $\Pi_0 = \{s\colon \operatorname{Re} s<0\},$ an analog of the Sălăgean class is the class$D_{j}(\alpha)$ defined by the condition $\operatorname{Re} \frac{F^{(j + 1)}(s)}{F^{(j)}(s)} > \alpha$ for each $s\in \Pi_0.$ By analogy with the neighborhood of an analytic function in ${\mathbb D}$ defined by A. V. Goodman, for $F\in D_{j}(\alpha),$ we introduce the concept of a neighborhood $O_{j,\delta}(F)$ and establish the conditions under which all functions from $O_{j,\delta}(F)$ belong to $D_{j}(\alpha_1),$ $0\le \alpha_1<\alpha<1,$ and vice versa. The problem of belonging of solutions of the differential equation  $\frac{d^2w}{ds^2} + (\gamma_0e^{2s} + \gamma_1 e^s + \gamma_2)w = 0$ with real parameters to the class $D_{j}(\alpha)$ is investigated.

References

G. S. Sǎlǎgean, Subclasses of univalent functions, Lecture Notes Math., 1013, 362–372 (1983). DOI: https://doi.org/10.1007/BFb0066543

Al-Oboudi, On univalent functions defined by generalized Sǎlǎgean operator, Int. J. Math. and Math. Sci., 27, 1429–1436 (2004). DOI: https://doi.org/10.1155/S0161171204108090

S. B. Joshi, M. D. Sangle, New subclasses of univalent functions defined by using generalized Sǎlǎgean operator, J. Indones. Math. Soc., 15, № 2, 79–89 (2009). DOI: https://doi.org/10.22342/jims.15.2.46.79-89

M. Caclar, A. Deniz, Initial coefficients for a subclasses of bi-univalent functions defined by Sǎlǎgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. and Stat., 66, № 1, 85–91 (2017). DOI: https://doi.org/10.1501/Commua1_0000000777

M. M. Sheremeta, Hadamard composition of Gelfond–Leont'ev–Sǎlǎgean and Gelfond–Leont'ev–Ruscheweyh derivatives of functions analytic in the unit disc, Mat. Stud., 54, № 2, 115–134 (2020). DOI: https://doi.org/10.30970/ms.54.2.115-134

О. М. Головата, О. М. Мулява, М. М. Шеремета, Псевдозіркові, псевдоопуклі та близькі до псевдоопуклих ряди Діріхле, які задовольняють диференціальні рівняння з експоненціальними коефіцієнтами, Мат. методи і фіз.-мех. поля, 61, № 1, 57–70 (2018).

M. M. Sheremeta, Geometric properties of analytic solution of differential equations, Publisher I. E. Chyzhykov (2019). DOI: https://doi.org/10.30970/ms.52.2.138-143

A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598–601 (1957). DOI: https://doi.org/10.1090/S0002-9939-1957-0086879-9

M. Kuryliak, O. Skaskiv, On the domain of convergence of general Dirichlet series with complex exponents, Carpathian Math. Publ., 15, № 2, 594–607 (2023). DOI: https://doi.org/10.15330/cmp.15.2.594-607

A. Kuryliak, M. Kuryliak, O. Skaskiv, On the domain of the convergence of Taylor–Dirichlet series with complex exponents, Precarpathian Bull. Shevchenko Sci. Soc., 68, № 18, 25–31 (2023). DOI: https://doi.org/10.31471/2304-7399-2023-18(68)-25-31

Published
30.09.2024
How to Cite
SheremetaM., MulyavaO., and MedvedevM. “On the Analog of the Sălăgean Class for Dirichlet Series and the Solutions of One Linear Differential Equation With Exponential Coefficients”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 9, Sept. 2024, pp. 1412 -18, doi:10.3842/umzh.v76i9.8555.
Section
Research articles