The $n$-valent convexity of Frasin integral operators
Abstract
UDC 517.5
Let $ f_{i},$ $i\in\lbrace 1,2,\ldots, k\rbrace,$ is an analytic function on the unit disk in the complex plane of the form
$f_{i}(z) = z^{n} + a_{i,n+1}z^{n+1} + \ldots, n\in\mathbb{N} = \lbrace 1,2,\ldots\rbrace.$
We consider the Frasin integral operator as follows:
\begin{gather*}\label{e1.3}
G_{n}(z)=\int\limits_{0}^{z} n\xi^{(n-1)}\bigg(\dfrac{f'_{1}(\xi)}{n\xi^{n-1}}\bigg)^{\alpha_{1}}\cdots\bigg(\dfrac{f'_{k}(\xi)}{n\xi^{n-1}}\bigg)^{\alpha_{k}}d\xi.
\end{gather*}
In this paper, we obtain a sufficient condition under which this integral operator is $n$-valent convex and get other interesting results.
References
D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apulensis. Math. Inform., 16, 11 – 16 (2008).
E. Deniz, On $p$-valent close-to-convex starlike and convex funtions, Hacet. J. Math. and Stat., 41, № 5, 635 – 642 (2012).
P. L. Duren, Univalent functions, Springer, New York (1983).
B. A. Frasin, New general integral operators of p-valent functions, J. Inequal. Pure and Appl. Math., 10, № 4, Article 109 (2009), 9 p.
D. J. Hallenbeck, St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52, 191 – 195 (1975), https://doi.org/10.2307/2040127 DOI: https://doi.org/10.2307/2040127
Copyright (c) 2021 shahram Najafzadeh -
This work is licensed under a Creative Commons Attribution 4.0 International License.