О множествах точек ветвления отображений, более общих, чем квазирегулярпые
Анотація
Доведено, що якщо точка$x_0 ∊ ℝ^n, \; n ≥ 3$, є істотною ізольованою сингулярністю відкритого дискретного $Q$-відображення $f : D → \overline{ℝ^n},\; B_f$ — множина точок розгалуження $f$ у $D$ і точка $z_0 ∊ \overline{ℝ^n}$ є асимптотичною границею $f$ у точці $x_0$, то для будь-якого околу $U$, що містить точку $x_0$, $z_0 ∊ \overline{f(B_f ∩ U)}$ при умові, що функція $Q$ має скінченне середнє коливання у точці $x_0$ або логарифмічну сингулярність порядку не вище ніж $n − 1$. Більш того, при вказаних умовах на функцію $Q$ і $n ≥ 2$ кожна точка множини $\overline{ℝ^n}\ f(D)$ є асимптотичною границею $f$ у точці $x_0$, і при $n ≥ 3$ має місце співвідношення $\overline{ℝ^n}∖f(D) ⊂\overline{f(B_f ∩ U)}$. Якщо, крім того, $∞ ∉ f(D)$, то множина $f B_f$ є необмеженою і $x_0 ∈ \overline{B_f}$.
Опубліковано
25.02.2010
Як цитувати
СевостьяновЕ. А. «О множествах точек ветвления отображений, более общих, чем квазирегулярпые». Український математичний журнал, вип. 62, вип. 2, Лютий 2010, с. 215–230, https://umj.imath.kiev.ua/index.php/umj/article/view/2858.
Номер
Розділ
Статті