$p$-Adic Markov process and the problem of the first return over balls
Анотація
UDC 511.225, 519.217, 511.225.1, 303.532
$p$ -адичнi марковськi процеси та задача першого повернення для куль
Розглядається псевдодиференціальний оператор $H^{\alpha}\varphi = \mathcal{F}^{-1}[(\langle \xi\rangle^{\alpha} - p^{r\alpha})\mathcal{F}_{\varphi}],$ де $ \langle \xi \rangle= (\max\{|\xi|_{p}, p^r\})^{\alpha}$ та вивчається пов'язаний із цим оператором марковський процес.
Також вивчається задача часу першого проходу для $H^{\alpha}$ при $r<0.$
Посилання
S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Theory of p-adic distributions. Linear and nonlinear models, London Math. Soc. Lect. Note Ser. 370, Cambridge Univ. Press (2010), https://doi.org/10.1017/CBO9781139107167 DOI: https://doi.org/10.1017/CBO9781139107167
V. A. Avetisov, A. Kh. Bikulov, Protein ultrametricity and spectral diffusion in deeply frozen proteins, Rev. Lett., 3, № 3 (2008). DOI: https://doi.org/10.1142/S1793048008000836
V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev, V. A. Osipov, $p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. and Gen., 35, 177 – 189 (2002), https://doi.org/10.1088/0305-4470/35/2/301 DOI: https://doi.org/10.1088/0305-4470/35/2/301
V. A. Avetisov, A. Kh. Bikulov, A. P. Zubarev, First passage time distribution and the number of returns for
ultrametric random walks, J. Phys. A: Math. and Theor., 42, Article 085003 (2009), https://doi.org/10.1088/1751-8113/42/8/085003 DOI: https://doi.org/10.1088/1751-8113/42/8/085003
A. Kh. Bikulov, Problem of the first passage time for $p$-adic diffusion, $p$-Adic numbers, Ultrametric Anal. and Appl., 2, № 2, 89 – 99 (2010), https://doi.org/10.1134/S2070046610020019 DOI: https://doi.org/10.1134/S2070046610020019
O. F. Casas-S´anchez, J. J. Rodr´ıguez-Vega, Parabolic type equations on p-adic balls, Bol. Mat., 22, № 1, 97 – 106 (2015).
L. F. Chac´on-Cort´es, The problem of the first passage time for some elliptic pseudodifferential operators over the $p$-adics, Rev. Colombiana Mat., 48, № 2, 191 – 209 (2014), https://doi.org/10.15446/recolma.v48n2.54124 DOI: https://doi.org/10.15446/recolma.v48n2.54124
L. F. Chac´on-Cort´es, W. A. Z´u˜niga-Galindo, Nonlocal operators, parabolic-type equations, and ultrametric random walks, J. Math. Phys., 54, № 11, Article 113503 (2013), https://doi.org/10.1063/1.4828857 DOI: https://doi.org/10.1063/1.4828857
E. B. Dynkin, Markov processes, vol. I. Springer-Verlag (1965). DOI: https://doi.org/10.1007/978-3-662-00031-1
A. Y. Khrennikov, A. N. Kochubei, On the p-Adic Navier – Stokes equation, Appl. Anal., https://doi.org/10.1080/00036811.2018.1533120. DOI: https://doi.org/10.1080/00036811.2018.1533120
A. Y. Khrennikov, A. N. Kochubei, $p$-Adic analogue of the porous medium equation, J. Fourier Anal. and Appl., https://doi.org/10.1007/s00041-017-9556-4. DOI: https://doi.org/10.1007/s00041-017-9556-4
A. N. Kochubei, Linear and nonlinear heat equations on a $p$-adic ball, Ukr. Math. J., 70, № 2, (2018). DOI: https://doi.org/10.1007/s11253-018-1496-x
A. N. Kochubei, Pseudo-differential equations ans stochastic over non-Archimedian fields, Marcel Dekker, New York (2001), https://doi.org/10.1201/9780203908167 DOI: https://doi.org/10.1201/9780203908167
M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press (1975).
A. Torresblanca-Badillo, W. A. Z´u˜niga-Galindo, Ultrametric diffusion, exponential landscapes and the first passage time problem, Acta Appl. Math., 1 – 24 (2018), https://doi.org/10.1007/s10440-018-0165-2 DOI: https://doi.org/10.1007/s10440-018-0165-2
V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physics, Ser. Soviet and East Europ. Math., vol. 1, World Sci., River Edge, NJ (1994), https://doi.org/10.1142/1581 DOI: https://doi.org/10.1142/1581
Авторські права (c) 2021 Jeanneth Galeano-Peñaloza, Oscar Casas-Sánchez, John Rodríguez-Vega
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.