Semi-nonoscillation intervals and sign-constancy of Green’s functions of two-point impulsive boundary-value problems
Анотація
UDC 517.9
Інтервали майже вiдсутностi осциляцiй та збереження знаку функцiй Грiна двоточкових iмпульсних крайових задач
Розглядається імпульсне диференціальне рівняння другого порядку із запізненням
$$(Lx)(t)\equiv x''(t) + \sum\limits _{j = 1}^{p} a_j(t) x'(t-\tau_j(t)) + \sum\limits _{j = 1}^{p} b_j(t) x(t-\theta_j(t)) = f(t), \quad t \in [0, \omega], $$ $$x(t_k) = \gamma_k x(t_k-0), \quad x'(t_k) = \delta_k x'(t_k-0),\quad k = 1, 2, \ldots , r,$$
де $\gamma_k > 0,$ $\delta_k >0$ для $k = 1, 2, \ldots , r.$ Знайдено умови майже відсутності коливань для відповідного однорідного рівняння на інтервалі $[0, \omega].$ За допомогою цих результатів сформульовано теореми про збереження знака функцій Гріна двоточкових імпульсних крайових задач у термінах диференціальних нерівностей.
Посилання
R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer (2012), https://doi.org/10.1007/978-1-4614-3455-9 DOI: https://doi.org/10.1007/978-1-4614-3455-9
R. P. Agarwal, D. O’Regan, Multiple nonnegative solutions for second order impulsive differential equations, Appl. Math. and Comput., 114, № 1, 51 – 59 (2000), https://doi.org/10.1016/S0096-3003(99)00074-0 DOI: https://doi.org/10.1016/S0096-3003(99)00074-0
N. V. Azbelev, About zeros of solutions of linear differential equations of the second order with delayed argument, Differents. Uravn., 7, № 7, 1147 – 1157 (1971).
N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional differential equations: methods and applications, Contemp. Math. and Its Appl., vol. 3, Hindawi, New York (2007), https://doi.org/10.1155/9789775945495 DOI: https://doi.org/10.1155/9789775945495
A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, VSP, Utrecht; Boston (2004), https://doi.org/10.1515/9783110944679 DOI: https://doi.org/10.1515/9783110944679
A. Domoshnitsky, Wronskian of fundamental system of delay differential equations, Funct. Different. Equat., 7, 445 – 467 (2002).
A. Domoshnitsky, M. Drakhlin, Nonoscillation of first order impulsive differential equations with delay, J. Math. Anal. and Appl., 206, № 1, 254 – 269 (1997), https://doi.org/10.1006/jmaa.1997.5231 DOI: https://doi.org/10.1006/jmaa.1997.5231
A. Domoshnitsky, G. Landsman, Semi-nonoscillation intervals in the analysis of sign constancy of Green’s functions of Dirichlet, Neumann and focal impulsive problems, Adv. Differerence Equat., 81,№1 (2017), https://doi.org/10.1186/s13662-017-1134-1 DOI: https://doi.org/10.1186/s13662-017-1134-1
A. Domoshnitsky, G. Landsman, S. Yanetz, About sign-constancy of Green’s functions of one-point problem for impulsive second order delay equations, Funct. Different. Equat., 21, № 1-2, 3 – 15 (2014). DOI: https://doi.org/10.7494/OpMath.2014.34.2.339
A. Domoshnitsky, V. Raichik, The Sturm separation theorem for impulsive delay differential equations, Tatra MT Math. Publ., 71, № 1, 65 – 70 (2018), https://doi.org/10.2478/tmmp-2018-0006 DOI: https://doi.org/10.2478/tmmp-2018-0006
A. Domoshnitsky, I. Volinsky, About differential inequalities for nonlocal boundary-value problems with impulsive delay equations, Math. Bohem., 140>, № 2, 121 – 128 (2015). DOI: https://doi.org/10.21136/MB.2015.144320
A. Domoshnitsky, I. Volinsky, About positivity of Green’s functions for nonlocal boudary value problems with impulsive delay equations, Sci. World J. (TSWJ): Math. Anal., Article ID 978519, https://doi.org/10.1155/2014/978519 (2014). DOI: https://doi.org/10.1155/2014/978519
A. Domoshnitsky, I. Volinsky, R. Shklyar, About Green’s functions for impulsive differential equations, Funct. Different. Equat., 20, № 1-2, 55 – 81 (2013).
M. Feng, D. Xie, Multiple positive solutions of multi-point boundary-value problem for second-order impulsive differential equations, J. Math. Anal. and Appl., 223, № 1, 438 – 448 (2009), https://doi.org/10.1016/j.cam.2008.01.024 DOI: https://doi.org/10.1016/j.cam.2008.01.024
L. Hu, l. Liu, Y. Wu, Positive solutions of nonlinear singular two-point boundary-value problems for second-order impulsive differential equations, Appl. Math. and Comput., 196, № 2, 550 – 562 (2008), https://doi.org/10.1016/j.amc.2007.06.014 DOI: https://doi.org/10.1016/j.amc.2007.06.014
T. Jankowsky, Positive solutions to second order four-point boundary-value problems for impulsive differential equations, Appl. Math. and Comput., 202, № 2, 550 – 561 (2008), https://doi.org/10.1016/j.amc.2008.02.040 DOI: https://doi.org/10.1016/j.amc.2008.02.040
D. Jiang, X. Lin, Multiple positive solutions of Dirichlet boundary-value problems for second order impulsive differential equations, J. Math. Anal. and Appl., 321, № 2, 501 – 514 (2006), https://doi.org/10.1016/j.jmaa.2005.07.076 DOI: https://doi.org/10.1016/j.jmaa.2005.07.076
M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreyko, Y. B. Ruticki, V. Y. Stet’senko, Approximate solution of
operator equations, Nauka, Moscow (1969) (in Russian).
S. M. Labovskii, Condition of nonvanishing of Wronskian of fundamental system of linear equation with delayed argument>, Differents. Uravn., 10, № 3, 426 – 430 (1974).
V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Sci., Singapore (1989), https://doi.org/10.1142/0906 DOI: https://doi.org/10.1142/0906
E. K. Lee, Y. H. Lee, Multiple positive solutions of singular two point boundary-value problems for second order impulsive differential equations, Appl. Math. and Comput., 158, № 3, 745 – 759 (2004), https://doi.org/10.1016/j.amc.2003.10.013 DOI: https://doi.org/10.1016/j.amc.2003.10.013
Iu. Mizgireva, On Positivity of Green’s functions of two-point impulsive problems, Funct. Different. Equat., № 3-4 (2018).
S. G. Pandit, S. G. Deo, Differential systems involving impulses, Lect. Notes Math., vol. 954, Springer-Verlag, New York (1982). DOI: https://doi.org/10.1007/BFb0067476
A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Sci., Singapore (1992), https://doi.org/10.1142/9789812798664 DOI: https://doi.org/10.1142/9789812798664
S. G. Zavalishchin, A. N. Sesekin, Dynamic impulse systems: theory and applications, Math. and Appl., 394, Kluwer, Dordrecht (1997), https://doi.org/10.1007/978-94-015-8893-5 DOI: https://doi.org/10.1007/978-94-015-8893-5
Авторські права (c) 2021 A. Domoshnitsky, Iu. Mizgireva, V. Raichik
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.