Conditional symmetry and reduction of differential equations with partial derivatives

Authors

  • W. I. Fushchich Inst. Math. Acad. Sci. Ukraine, Kiev
  • R. Z. Zhdanov Inst. Math. Acad. Sci. Ukraine, Kiev

Keywords:

-

Abstract

We establish sufficient conditions of reduction of partial differential equations admitting nontrivial conditional symmetry. The results obtained generalize the classical conditions of reduction of differential equations by using group-invariant solutions. Some examples of reduction of systems of partial differential equations both by number of independent and dependent variables are considered.

References

Ovsjannikov L. V. Group analysis of differential equations.— M. : Nauka, 1978.— 400 p.

Olver P. Applications of Lie groups to differential equations.— New York : Springer, 1986.— 497 p.

Sidorov A. F., Shapeev V. P., Yanenko N. N. Method of differential constraints and its applications in gas dynamics.— Novosibirsk: Nauka, 1984.— 270 p.

Fushchich W. I., Shtelen W. M., Serov N. I. Symmetry analysis and exact solutions of nonlinear mathematical physics equations.— Kiev : Nauk. Dumka, 1989.— 336 p.

Fushchich W. I., Zhdanov R. Z. Symmetry and exact solutions of nonlinear spinor equations// Phys. Repts.— 1989.— 172, N 4.— P. 123—174.

Fushchich W. I., Zhdanov R. Z. On some new exact solutions of the nonlinear d’Alembert — Hamilton system//Phys. Lett A.— 1989.— 141, N 3—4.— P. 113—115.

Courant R., Gilbert D. Methods of mathematical physics.—M. : Gostehizdat, 1951.— Vol. 1, 2.

Fushchich W. I., Nikitin A. G. Symmetry of quantum mechanics equations.— M. : Nauka, 1989.— 400 p.

Morgan A. The reduction by one of the number of independent variables in some systems of partial differential equations// Quart. J. Math.— 1952.— 3, N 12.— P. 250—259.

Fushchich W. I., Zhdanov R. Z. Non-Lie ansatzes and exact solutions of the nonlinear spinor equation // Ukr. Mat. Zh.— 1990,— 42, N 7.— P. 958—962.

Zhdanov R. Z., Andreitsev A. Yu. On non-Lie reduction of Galilei -invariant spinor eaua-tions// Dokl. Akad. Nauk Ukr. SSR.— 1990.— N 7А.— P. 8—11.

Olver P., Rosenau P. The construction of special solutions to partial differential equations// Phys. Lett A.— 1986.— 114, N 3.— P. 107—112.

Clarkson P., Kruskal M: New similarity solutions of the Boussinesq equation// J. Math. Phys.— 1989,— 30, N 10.—P. 2201—2213.

Fushchich W. I. Conditional symmetry of the nonlinear mathematical physics equations// Ukr. Mat. Zh.— 1991.— 43, N 11.—P. 1456—1471.

Fushchich W. I., Shtelen W. M. The symmetry and some exact solutions of the relativistic eikonal equation// Lett. nuovo cim.— 1982.— 34, N 6.— P. 498—501.

Ames W. F., Lohner R., Adams E. Group properties of utt=[f(u)ux]x // Nonlinear phenomena in mathematical sciences. New York: Acad. press, 1982.— P. 1—6.

Fushchich W. I., Revenko I. V., Zhdanov R. Z. Non symmetry approach to construction of exact solutions of some nonlinear wave equation // Dokl. Akad. Nauk Ukr.SSR.— 1991.— N 7А,— P. 15—16.

Ovsjannikov L. V. Partial invariance//Dokl. Akad. Nauk SSSR.— 1969.— 186, N 1.— P. 22—25.

Downloads

Published

03.08.1992

Issue

Section

Research articles

How to Cite

Fushchich , W. I., and R. Z. Zhdanov. “Conditional Symmetry and Reduction of Differential Equations With Partial Derivatives ”. Ukrains’kyi Matematychnyi Zhurnal, vol. 44, no. 7, Aug. 1992, pp. 970-82, https://umj.imath.kiev.ua/index.php/umj/article/view/8129.