On *-representations of λ-deformations of canonical commutation relations

Authors

  • D. P. Proskurin Київ. нац. ун-т iм. Т. Шевченка
  • R. Ya. Yakymiv Нац. ун-т бiоресурсiв i природокористування України, Київ

Abstract

We study irreducible integrable *-representations of the algebra $\mathfrak{U}_{\lambda, 2}$ generated by the following relations: $$\mathfrak{U}_{\lambda, 2} = \mathbb{C} \langle a_j, a_j^{*} \,| \,a_j^{*} a_j = 1 + a_ja_j^{*},\; a_1^{*}a_2 = \lambda a_2a_1^{*},\; a_2a_1 = \lambda a_1 a_2,\; j = 1, 2 \rangle .$$ For this *-algebra, we prove an analog of the von Neumann theorem on the uniqueness of an irreducible integrable representation.

Published

25.04.2013

Issue

Section

Research articles

How to Cite

Proskurin, D. P., and R. Ya. Yakymiv. “On *-Representations of λ-Deformations of Canonical Commutation Relations”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 4, Apr. 2013, pp. 538-45, https://umj.imath.kiev.ua/index.php/umj/article/view/2437.