On *-representations of λ-deformations of canonical commutation relations
Abstract
We study irreducible integrable *-representations of the algebra $\mathfrak{U}_{\lambda, 2}$ generated by the following relations: $$\mathfrak{U}_{\lambda, 2} = \mathbb{C} \langle a_j, a_j^{*} \,| \,a_j^{*} a_j = 1 + a_ja_j^{*},\; a_1^{*}a_2 = \lambda a_2a_1^{*},\; a_2a_1 = \lambda a_1 a_2,\; j = 1, 2 \rangle .$$ For this *-algebra, we prove an analog of the von Neumann theorem on the uniqueness of an irreducible integrable representation.Downloads
Published
25.04.2013
Issue
Section
Research articles
How to Cite
Proskurin, D. P., and R. Ya. Yakymiv. “On *-Representations of λ-Deformations of Canonical Commutation Relations”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 4, Apr. 2013, pp. 538-45, https://umj.imath.kiev.ua/index.php/umj/article/view/2437.