Whitney’s jets for Sobolev functions

  • B. Bojarski


We present two fundamental facts of the jet theory for Sobolev spaces $W^{m, p}$. One of them is that the formal differentiation of $k$-jets theory is compatible with the pointwise definition of Sobolev $(m - 1)$-jet spaces on regular subsets of Euclidean spaces $R^n$. The second result describes the Sobolev embedding operator of Sobolev jet spaces increasing the order of integrability of Sobolev functions up to the critical Sobolev exponent.
How to Cite
BojarskiB. “Whitney’s Jets for Sobolev Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, no. 3, Mar. 2007, pp. 345–358, https://umj.imath.kiev.ua/index.php/umj/article/view/3311.
Research articles