Asymptotic properties of the norm of extremum values of normal random elements in the space <em class="a-plus-plus">C</em>[0, 1]
Abstract
We prove that $$\mathop {\lim }\limits_{n \to \infty } \left( {\left\| {Z_n } \right\| - (2 ln (n))^{1/2} \left\| \sigma \right\|} \right) = 0 a.s.,$$ where X is a normal random element in the space C [0,1], MX = 0, σ = {(M¦X(t)¦2)1/2 t∈[0,1}, (X n ) are independent copies of X, and \(Z_n = \mathop {\max }\limits_{l \leqslant k \leqslant n} X_k \) . Under additional restrictions on the random element X, this equality can be strengthened.
Published
25.09.1998
How to Cite
MatsakI. K. “Asymptotic Properties of the Norm of Extremum Values of Normal Random Elements in the Space <em class="a-Plus-plus">C</Em>[0, 1]”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 50, no. 9, Sept. 1998, pp. 1227–1235, https://umj.imath.kiev.ua/index.php/umj/article/view/4838.
Issue
Section
Research articles