Asymptotic properties of the norm of extremum values of normal random elements in the space C[0, 1]

Authors

  • I. K. Matsak (Київ. нац. ун-т iм. Т. Шевченка)

Abstract

We prove that $$\mathop {\lim }\limits_{n \to \infty } \left( {\left\| {Z_n } \right\| - (2 ln (n))^{1/2} \left\| \sigma \right\|} \right) = 0 a.s.,$$ where X is a normal random element in the space C [0,1], MX = 0, σ = {(M¦X(t2)1/2 t∈[0,1}, (X n ) are independent copies of X, and \(Z_n = \mathop {\max }\limits_{l \leqslant k \leqslant n} X_k \) . Under additional restrictions on the random element X, this equality can be strengthened.

Published

25.09.1998

Issue

Section

Research articles

How to Cite

Matsak, I. K. “Asymptotic Properties of the Norm of Extremum Values of Normal Random Elements in the Space C[0, 1]”. Ukrains’kyi Matematychnyi Zhurnal, vol. 50, no. 9, Sept. 1998, pp. 1227–1235, https://umj.imath.kiev.ua/index.php/umj/article/view/4838.