Geometry of Ricci and $(\eta,\omega)$-Ricci solitons on the Sasaki–Kenmotsu manifold
DOI:
https://doi.org/10.3842/umzh.v77i1.8084Keywords:
Sasaki-Kenmotsu manifold,, Einstein manifold,, potential vector field,, infinitesimal vector field,, Ricci soliton,, (η,ω)-Ricci soliton,, conformal (η,ω)-Ricci soliton. soliton.Abstract
UDC 514.7
We characterize the Sasaki–Kenmotsu manifold by using different kinds of solitons. Thus, we introduce a new type of solitons on the Sasaki–Kenmotsu manifold using a bicontact structure. First, we observe the properties of the Ricci soliton on $(\eta,\omega)$-Sasaki–Kenmotsu manifold by using bicontact structure. Then we extended the $\eta$-Ricci soliton as an $(\eta,\omega)$-Ricci soliton and a conformal $\eta$-Ricci soliton as a conformal $(\eta,\omega)$-Ricci soliton by using the bicontact structure.
References
The full version of this paper will be published in Ukrainian Mathematical Journal, Vol. 77, No. 1, 2025.
Downloads
Published
25.03.2025
Issue
Section
Research articles
License
Copyright (c) 2025 Sangeetha M

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Sangeetha, M., and H. G. Nagaraja. “Geometry of Ricci and $(\eta,\omega)$-Ricci Solitons on the Sasaki–Kenmotsu Manifold”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 1, Mar. 2025, p. 77, https://doi.org/10.3842/umzh.v77i1.8084.