Geometry of Ricci and $(\eta,\omega)$-Ricci solitons on the Sasaki–Kenmotsu manifold
DOI:
https://doi.org/10.3842/umzh.v77i1.8084Keywords:
Sasaki-Kenmotsu manifold,, Einstein manifold,, potential vector field,, infinitesimal vector field,, Ricci soliton,, (η,ω)-Ricci soliton,, conformal (η,ω)-Ricci soliton. soliton.Abstract
UDC 514.7
We characterize the Sasaki–Kenmotsu manifold by using different kinds of solitons. Thus, we introduce a new type of solitons on the Sasaki–Kenmotsu manifold using a bicontact structure. First, we observe the properties of the Ricci soliton on $(\eta,\omega)$-Sasaki–Kenmotsu manifold by using bicontact structure. Then we extended the $\eta$-Ricci soliton as an $(\eta,\omega)$-Ricci soliton and a conformal $\eta$-Ricci soliton as a conformal $(\eta,\omega)$-Ricci soliton by using the bicontact structure.
References
The full version of this paper will be published in Ukrainian Mathematical Journal, Vol. 77, No. 1, 2025.