Geometry of Ricci and $(\eta,\omega)$-Ricci solitons on the Sasaki–Kenmotsu manifold

Authors

  • M. Sangeetha Department of Mathematics, Bangalore University, Karnataka, India
  • H. G. Nagaraja Department of Mathematics, Bangalore University, Karnataka, India

DOI:

https://doi.org/10.3842/umzh.v77i1.8084

Keywords:

Sasaki-Kenmotsu manifold,, Einstein manifold,, potential vector field,, infinitesimal vector field,, Ricci soliton,, (η,ω)-Ricci soliton,, conformal (η,ω)-Ricci soliton. soliton.

Abstract

UDC 514.7

We characterize the Sasaki–Kenmotsu manifold by using different kinds of solitons. Thus, we introduce a new type of solitons on the Sasaki–Kenmotsu manifold using a bicontact structure.  First, we observe the properties of the Ricci soliton on $(\eta,\omega)$-Sasaki–Kenmotsu manifold by using bicontact structure. Then we extended the $\eta$-Ricci soliton as an $(\eta,\omega)$-Ricci soliton and a conformal $\eta$-Ricci soliton as a conformal $(\eta,\omega)$-Ricci soliton by using the bicontact structure.

References

The full version of this paper will be published in Ukrainian Mathematical Journal, Vol. 77, No. 1, 2025.

Published

25.03.2025

Issue

Section

Research articles

How to Cite

Sangeetha, M., and H. G. Nagaraja. “Geometry of Ricci and $(\eta,\omega)$-Ricci Solitons on the Sasaki–Kenmotsu Manifold”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 1, Mar. 2025, p. 77, https://doi.org/10.3842/umzh.v77i1.8084.