Kirkwood–Salzburg equation for connected correlation functions

Authors

  • O. Rebenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • Yu. Pogorelov IFIMUP-IN, Departamento de Fisica e Astronomia, Universidade do Porto, Portugal

DOI:

https://doi.org/10.3842/umzh.v77i4.8350

Keywords:

Класична статистична механіка, зв'язні кореляційні функції.

Abstract

An infinite system of nonlinear Kirkwood-Salzburg equations is deduced for the connected correlation functions of a continuous system of classical point particles interacting via a pair potential.  We consider the equation for density that takes into account only  2-particle correlations between the particles. The qualitative analysis of the behavior of this equation is carried out from the viewpoint of finding possible critical points indicating the existence of phase transitions for different values of temperature and chemical potential. As a possible next step, we can mention the application of numerical methods and higher correlations.

References

1. S. Albeverio, Yu. G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces, J. Funct. Anal., 154, № 2, 444–500 (1998). DOI: https://doi.org/10.1006/jfan.1997.3183

2. S. Albeverio, Yu. G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces: The Gibbsian case, J. Funct. Anal., 157, № 1, 242–291 (1998). DOI: https://doi.org/10.1006/jfan.1997.3215

3. F. A. Berezin, Relationships between the correlation functions in classical statistical physics, Theor. Math. Phys., 3, 386–394 (1971); https://doi.org/10.1007/BF01031593. DOI: https://doi.org/10.1007/BF01031593

4. N. N. Bogolyubov, Problems of a dynamical theory in statistical physics, Gostekhizdat, Leningrad (1946) (in Russian); Stud. Stat. Mech., Vol. 1, J. de Boer and G. E. Uhlenbeck (Eds.), North Holland, Amsterdam (1962).

5. Yu. G. Kondratiev, T. Kuna, Harmonic analysis on configuration spaces. I. General theory, Infin. Dimens. Anal. Quantum Probal. and Relat. Top., 5, № 2, 201–233 (2002). DOI: https://doi.org/10.1142/S0219025702000833

6. V. A. Malyshev, R. A. Minlos, Gibs random fields, Mathematics and its Applications (Soviet Series), 44, Kluwer Acad. Publ. Group, Dordrecht (1991).

7. A. L. Rebenko, A new proof of Ruelle's superstability bounds, J. Stat. Phys., 91, № 3-4, 815–826 (1998). DOI: https://doi.org/10.1023/A:1023098131878

8. K. R. Parthasarathy, Probability measure on metric spaces, Acad. Press, New York, London (1967). DOI: https://doi.org/10.1016/B978-1-4832-0022-4.50006-5

9. O. Penrose, Convergence of fugacity expansions for fluids and lattice gases, J. Math. Phys., 4, № 10, 1312–1320 (1963). DOI: https://doi.org/10.1063/1.1703906

10. O. Penrose, Convergence of fugacity expansions for classical systems, Statistical Mechanics: Foundations and Applications, Proc. I.U.P.A.P. Meeting Copenhagen, 1966, Thor A. Bak (Ed.), W. A. Benjamin, Inc., New York (1967).

11. S. N. Petrenko, A. L. Rebenko, Superstable criterion and superstable bounds for infinite range interaction I: Two-body potentials, Methods Funct. Anal. and Topology, 13, № 1, 50–61 (2007).

12. S. N. Petrenko, A. L. Rebenko, Superstable criterion and superstable bounds for infinite range interaction II: many-body potentials, Proc. Inst. Math. NAS Ukraine, 6, № 1, 191–208 (2009).

13. A. L. Rebenko, M. V. Tertychnyi, Quasi-lattice approximation of statistical systems with strong superstable interactions. Correlation functions, J. Math. Phys., 50, № 3, 1–16 (2009). DOI: https://doi.org/10.1063/1.3081054

14. D. Ruelle, Statistical mechanics (rigorous results), W. A. Benjamin, inc., New York, Amsterdam (1969).

15. D. Ruelle, Cluster property of the correlation functions of classical gases, Rev. Mod. Phys., 36, № 2, 580–583 (1964). DOI: https://doi.org/10.1103/RevModPhys.36.580

16. D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18, № 2, 127–159 (1970). DOI: https://doi.org/10.1007/BF01646091

Published

11.06.2025

Issue

Section

Research articles

How to Cite

Rebenko, O., and Yu. Pogorelov. “Kirkwood–Salzburg Equation for Connected Correlation Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 4, June 2025, pp. 265–276, https://doi.org/10.3842/umzh.v77i4.8350.