Boyanov–Naidenov problem and the Kolmogorov-type inequalities for functions on the real axis

Authors

  • V. Kofanov Oles Honchar Dnipro National University

DOI:

https://doi.org/10.3842/umzh.v77i1.8538

Keywords:

Boyanov-Naidenov problem, Kolmogorov type inequality, trigonometric polynomials and splines, Sobolev classes

Abstract

UDC 517.5

We solve the Boyanov–Naidenov problem $\big\|x^{(k)}\big\|_{q,\, \delta} \to \sup,$ $k= 1,\ldots ,r-1,$ $q \ge 1,$ on the classes of functions $W^r_{p,\varepsilon}(A_0, A_r):=\big\{x\in L^r_{\infty}\colon \|x\|_{p, \varepsilon} \le A_0 ,\ \big\|x^{(r)}\big\|_{\infty} \le A_r \big\},$ where $\|x\|_{p, \delta}:=\sup \big\{ \|x\|_{L_p[a,\, b]}\colon a, b \in {\rm \bf R}, \ 0< b-a \le \delta \big\},$ $p, \delta > 0,$ $\varepsilon \in (0, \varepsilon_1 ],$ $\varepsilon_1 := \pi / \omega,$ the number $\omega$ satisfies the condition $A_0 = A_r \|\varphi_{\omega, r}\|_{p,\, \pi / \omega},$  $\varphi_{\omega, r}(t):=\omega^{-r}\varphi_{ r}(\omega t),$ and $\varphi_{ r}$ is the ideal Euler spline of order $r.$ In addition, we prove that the Boyanov–Naidenov problem is equivalent to the problem of sharp constant $C = C(\lambda)$ in the Kolmogorov-type inequality \begin{gather}\big\|x^{(k)}\big\|_{q,\, \delta} \leq C \|x\|_{p,\, \varepsilon}^{\alpha} \big\|x^{(r) }\big\|_\infty^{1-\alpha},  \quad x\in L^{r, \lambda}_{p,\varepsilon}, \tag{1}  \end{gather} where $\alpha=\dfrac{r-k+1/q}{r+1/p},$ $L^{r, \lambda}_{p,\varepsilon}:= \big\{x\in L^r_{\infty}\colon \|x\|_{p,\, \varepsilon} = \|\varphi_{\lambda, r}\|_{p,\, \varepsilon}\cdot \big\|x^{(r)}\big\|_{\infty} \big\},$ and $\lambda > 0.$ In particular, we obtain the sharp inequality of the form (1).

We also solve the Boyanov–Naidenov problem in the spaces of trigonometric polynomials and splines and establish the theorems on the relationship between this problem and sharp inequalities of the Bernstein type.  As a consequence, we prove sharp inequalities of the indicated  type for polynomials and splines.

References

Н. П. Корнейчук, В. Ф. Бабенко, В. А. Кофанов, С. А. Пичугов, Неравенства для производных и их приложения, Наук. думка, Киев (2003).

В. Ф. Бабенко, Исследования днепропетровских математиков по неравенствам для производных периодических функций и их приложениям, Укр. мат. журн., 52, № 1, 5–29 (2000).

M. K. Kwong, A. Zettl, Norm inequalities for derivatives and differences, Lecture Notes in Math., 1536, Springer-Verlag, Berlin (1992). DOI: https://doi.org/10.1007/BFb0090864

В. Ф. Бабенко, В. А. Кофанов, А. С. Пичугов, Сравнение точных констант в неравенствах для производных на действительной оси и на окружности, Укр. мат. журн., 55, № 5, 579–589 (2003).

B. Bojanov, N. Naidenov, An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdos, J. Anal. Math., 78, 263–280 (1999). DOI: https://doi.org/10.1007/BF02791137

P. Erdös, Open problems, in: Open Problems in Approximation Theory, B. Bojanov, Ed., SCT Publ., Singapure (1994).

В. А. Кофанов, Неравенства для непериодических сплайнов на действительной оси и их производных, Укр. мат. журн., 66, № 2, 216–225 (2014).

A. Pinkus, O. Shisha, Variations on the Chebyshev and $L^q$ theories of best approximation, J. Approx. Theory, 35, № 2, 148–168 (1982). DOI: https://doi.org/10.1016/0021-9045(82)90033-8

В. А. Кофанов, О некоторых экстремальных задачах разных метрик для дифференцируемых функций на оси, Укр. мат. журн., 61, № 6, 765–776 (2009).

V. A. Kofanov, Some extremal problems of various metrics and sharp inequalities of Nagy–Kolmogorov type, East J. Approx., 16, № 4, 313–334 (2010).

В. А. Кофанов, Точные верхние грани норм функций и их производных на классах функций с заданной функцией сравнения, Укр. мат. журн., 63, № 7, 969–984 (2011).

В. А. Кофанов, Задача Боянова–Найденова для функций с несимметричными ограничениями на старшую производную, Укр. мат. журн., 71, № 3, 368–381 (2019).

В. А. Кофанов, Неравенства для производных функций на оси с несимметрично ограниченными старшими производными, Укр. мат. журн., 64, № 5, 636–648 (2012).

В. А. Кофанов, Задача Боянова–Найдьонова для диференційовних функцій і задача Ердьоша для поліномів та сплайнів, Укр. мат. журн., 75, № 2, 182–197 (2023). DOI: https://doi.org/10.37863/umzh.v75i2.7259

В. А. Кофанов, Взаємозв'язок задачі Боянова–Найдьонова з нерівностями колмогоровського типу, Укр. мат. журн., 76, № 3, 395–404 (2024). DOI: https://doi.org/10.3842/umzh.v76i3.7656

V. A. Kofanov, On the relationship between sharp Kolmogorov-type inequalities and sharp Kolmogorov–Remez-type inequalities, Ukr. Math. J., 73, № 4, 592–600 (2021). DOI: https://doi.org/10.1007/s11253-021-01945-8

E. Nursultanov, S. Tikhonov, A sharp Remez inequality for trigonometric polynomials, Constr. Approx., 38, 101–132 (2013). DOI: https://doi.org/10.1007/s00365-012-9172-0

S. Tikhonov, P. Yuditski, Sharp Remez inequality, Constr. Approx., 52, 233–246 (2020). DOI: https://doi.org/10.1007/s00365-019-09473-2

V. A. Kofanov, Sharp Remez-type inequalities for differentiable periodic functions, polynomials, and splines, Ukr. Math. J., 68, № 2, 253–268 (2016). DOI: https://doi.org/10.1007/s11253-016-1222-5

V. A. Kofanov, Sharp Remez-type inequalities of different metrics for differentiable periodic functions, polynomials, and splines, Ukr. Math. J., 69, № 2, 205–223 (2017). DOI: https://doi.org/10.1007/s11253-017-1357-z

A. E. Gaidabura, V. A. Kofanov, Sharp Remez-type inequalities of various metrics in the classes of functions with given comparison function, Ukr. Math. J., 69, № 11, 1710–1726 (2017). DOI: https://doi.org/10.1007/s11253-018-1465-4

V. A. Kofanov, Sharp Kolmogorov–Remez-type inequalities for periodic functions of low smoothness, Ukr. Math. J., 72, № 4, 555–567 (2020). DOI: https://doi.org/10.1007/s11253-020-01800-2

V. A. Kofanov, I. V. Popovich, Sharp Remez-type inequalities of various metrics with asymmetric restrictions imposed on the functions, Ukr. Math. J., 72, № 7, 1068–1079 (2020). DOI: https://doi.org/10.1007/s11253-020-01844-4

V. A. Kofanov, T. V. Olexandrova, A sharp Remez type inequalities which estimates $L_q$-norm of a function with the help of its $L_p$-norm, Ukr. Math. J., 74, № 5, 635–649 (2022). DOI: https://doi.org/10.1007/s11253-022-02097-z

В. А. Кофанов, Задача Боянова–Найденова для дифференцируемых функций на оси и неравенства разных метрик, Укр. мат. журн., 71, № 6, 786–800 (2019).

V. A. Kofanov, Inequalities of different metrics for differentiable periodic functions, Ukr. Math. J., 67, № 2, 230–242 (2015). DOI: https://doi.org/10.1007/s11253-015-1076-2

А. Н. Колмогоров, О неравенствах между верхними гранями последовательных производных функции на бесконечном интервале, Избр. труды. Математика, механика, Наука, Москва (1985), c. 252–263.

A. A. Ligun, Inequalities for upper bounds of functionals, Anal. Math., 2, № 1, 11–40 (1976). DOI: https://doi.org/10.1007/BF02079905

V. A. Kofanov, V. E. Miropolskiy, On the best constants in inequalilies of Kolmogorov type, East J. Approx., 13, № 4, 455–466 (2007).

A. P. Calderon, G. Klein, On an extremum problem concerning trigonometrical polynomials, Stud. Math., 12, 166–169 (1951). DOI: https://doi.org/10.4064/sm-12-1-166-169

V. A. Kofanov, Sharp inequalities of Bernstein and Kolmogorov type, East J. Approx., 11, № 2, 131–145 (2005).

А. А. Лигун, Точные неравенства для сплайн-функций и наилучшие квадратурные формулы для некоторых классов функций, Мат. заметки, 19, № 6, 913–926 (1976).

В. А. Кофанов, О точных неравенствах типа Бернштейна для сплайнов, Укр. мат. журн., 58, № 10, 1357–1367 (2006).

Published

25.03.2025

Issue

Section

Research articles

How to Cite

Kofanov, V. “Boyanov–Naidenov Problem and the Kolmogorov-Type Inequalities for Functions on the Real Axis”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 1, Mar. 2025, pp. 14-27, https://doi.org/10.3842/umzh.v77i1.8538.