On the boundary estimates for the distortions of mappings in domains with Poincaré inequality

Authors

  • E. Sevost’yanov Ivan Franko Zhytomyr State University; Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine, Sloviansk, Donetsk region
  • M. Baronova Ivan Franko Zhytomyr State University
  • O. Dovhopiatyi Ivan Franko Zhytomyr State University
  • N. Ilkevych Ivan Franko Zhytomyr State University

DOI:

https://doi.org/10.3842/umzh.v77i1.8647

Keywords:

quasiconformal mappings, mappings with finite distortion, distortion estimates

Abstract

UDC 517.5

We study the mappings that distort the modulus of the families of paths according to the Poletsky-inequality type. At the boundary points of a domain, we obtain estimates for the distortion of  distances to these mappings provided that their characteristic either has a finite mean oscillation at every point or satisfies the Lehto-type integral conditions, while the mapped domain is Ahlfors regular and satisfies the Poincar\'e inequality. The  cases of homeomorphisms and mappings with branching  are analyzed, as well as  the domains with good boundaries and  domains with prime ends.

References

O. Martio, S. Rickman, J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Math., 465, 1–13 (1970). DOI: https://doi.org/10.5186/aasfm.1969.448

O. Martio, R. Näkki, Boundary Hölder continuity and quasiconformal mappings, J. London Math. Soc (2), 44, 339–350 (1991). DOI: https://doi.org/10.1112/jlms/s2-44.2.339

V. I. Ryazanov, E. A. Sevost'yanov, Toward the theory of ring $Q$-homeomorphisms, Israel J. Math., 68, 101–118 (2008). DOI: https://doi.org/10.1007/s11856-008-1058-2

O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Sci. + Business Media, LLC, New York (2009).

M. Arsenović, M. Mateljević, On the Hölder continuity of ring $Q$-homeomorphisms, Georgian Math. J., 29, № 6, 805–811 (2022). DOI: https://doi.org/10.1515/gmj-2022-2186

V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, On the Hölder property of mappings in domains and on boundaries, J. Math. Sci., 246, № 1, 60–74 (2020). DOI: https://doi.org/10.1007/s10958-020-04723-2

M. Mateljević, R. Salimov, E. Sevost'yanov, Hölder and Lipschitz continuity in Orlicz–Sobolev classes, distortion and harmonic mappings, Filomat, 36, № 16, 5359–5390 (2022). DOI: https://doi.org/10.2298/FIL2216359M

M. Mateljević, E. Sevost'yanov, On the behavior of Orlicz–Sobolev mappings with branching on the unit sphere, J.~Math. Sci., 270, № 3, 467–499 (2023). DOI: https://doi.org/10.1007/s10958-023-06358-5

О. А. Сарана, Про гомеоморфізми з інтегральними обмеженнями, які діють в області з нерівностями Пуанкаре, Праці Інституту прикл. математики і механіки НАН України, 37, № 2, 95–103 (2023).

E. Sevost'yanov, The boundary Hölder continuity of mappings with the Poletsky condition, J. Math. Sci., 281, № 5, 818–835 (2024). DOI: https://doi.org/10.1007/s10958-024-07149-2

О. П. Довгопятий, Є. О. Севостьянов, Про гомеоморфізми з фіксованою точкою на області з нерівностями Пуанкаре, Укр. мат. вісн., 21, № 4, 35–55 (2024).

R. Salimov, Ine property of ring $Q$-homeomorphisms with respect to a $p$-module, Ukr. Math. J., 65, № 5, 728–733 (2013). DOI: https://doi.org/10.1007/s11253-013-0818-2

R. Salimov, To a theory of ring $Q$-homeomorphisms with respect to a $p$-modulus, J. Math. Sci., 196, № 5, 679–692 (2014). DOI: https://doi.org/10.1007/s10958-014-1685-6

R. Salimov, B. Klishchuk, On the behavior of one class of homeomorphisms at innity, Ukr. Math. J., 74, 1617–1628 (2023). DOI: https://doi.org/10.1007/s11253-023-02158-x

R. Salimov, L. Vyhivska, B. Klishchuk, On distortions of the transnite diameter of disk image, Ukr. Math. J., 75, № 2, 235–243 (2023). DOI: https://doi.org/10.1007/s11253-023-02196-5

J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin etc. (1971). DOI: https://doi.org/10.1007/BFb0061216

J. Heinonen, Lectures on analysis on metric spaces, Springer Sci.+Business Media, New York (2001). DOI: https://doi.org/10.1007/978-1-4613-0131-8

M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Math. Diss., 11, 1–44 (1976).

D. Kovtonyuk, V. Ryazanov, On the theory of prime ends for space mappings, Ukr. Math. J., 67, № 4, 528–541 (2015). DOI: https://doi.org/10.1007/s11253-015-1098-9

R. Näkki, Prime ends and quasiconformal mappings, J. Anal. Math., 35, 13–40 (1979). DOI: https://doi.org/10.1007/BF02791061

T. Adamowicz, N. Shanmugalingam, Non-conformal Loewner type estimates for modulus of curve families, Ann. Acad. Sci. Fenn. Math., 35, 609–626 (2010). DOI: https://doi.org/10.5186/aasfm.2010.3538

K. Kuratowski, Topology, vol. 2, Academic Press, New York, London (1968).

O. Martio, S. Rickman, J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Math., 488, 1–31 (1971). DOI: https://doi.org/10.5186/aasfm.1971.488

R. Näkki, Continuous boundary extension of quasiconformal mappings, Ann. Acad. Sci. Fenn. Math., 511, 1–10 (1972). DOI: https://doi.org/10.5186/aasfm.1972.511

S. Saks, Theory of the integral, Dover Publ. Inc., New York (1964).

Published

25.03.2025

Issue

Section

Research articles

How to Cite

Sevost’yanov, E., et al. “On the Boundary Estimates for the Distortions of Mappings in Domains With Poincaré Inequality”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 1, Mar. 2025, pp. 57-71, https://doi.org/10.3842/umzh.v77i1.8647.