Generalization of the Schwarz–Pick inequality and its application to the extreme problems of approximation of holomorphic functions

Authors

  • V. Savchuk Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • M. Savchuk National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute''

DOI:

https://doi.org/10.3842/umzh.v77i1.8692

Keywords:

Обмежена голоморфна функція, найкраще наближення, екстремальна функція, нерівність Шварца--Піка

Abstract

UDC 517.5

We propose a method for the pointwise estimation of the derivative \[\left(\frac{f(z)-S_n(f)(z)}{z^n}\right)',\quad n\in\mathbb Z_+,\] where $S_n(f)$ is a partial sum of the Taylor series of a bounded holomorphic function in the unit circle $\mathbb D$ in terms of the absolute value of a function or the quantities of the type of best approximations. Sharp inequalities are obtained and the corresponding extreme functions are described. As a result, we deduce the Schwartz–Pick inequality and obtain the solutions of several extreme problems for the pointwise approximations of bounded holomorphic functions by the Fejér  means of the Taylor series.

References

M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, The Schwarz lemma: rigidity and dynamics, Harmonic and Complex Analysis and its Applications, Birkhäuser-Springer, Cham (2014). DOI: https://doi.org/10.1007/978-3-319-01806-5_3

F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Birkhäuser, Basel (2008). DOI: https://doi.org/10.1007/978-3-0346-0000-2

P. Butzer, J. R. Nessel, Fourier analysis and approximation, Birkhäuser, Basel (1971). DOI: https://doi.org/10.1007/978-3-0348-7448-9

В. В. Савчук, С. О. Чайченко, М. В. Савчук, Наближення обмежених голоморфних i гармонiчних функцiй середнiми Фейєра, Укр. мат. журн., 71, № 4, 516–542 (2019).

Дж. Гарнетт, Ограниченные аналитические функции, Мир, Москва (1984).

E. B. Saff, V. Totik, Behavior of polynomials of best uniform approximation, Trans. Amer. Math. Soc., 316, № 2, 567–593 (1989). DOI: https://doi.org/10.1090/S0002-9947-1989-0961628-3

L. Fejér, Über gewisse Potenzreihen an der Konvergenzgrenze, München. Bericht., 40, № 3 (1910).

P. Dienes, The Taylor series. An introduction to the theory of functions of a complex variable, Dover Publ. Inc. X, New York (1957).

D. Pompéiu, Sur une relation d’inégalité dans la théorie des fonctions holomorphes, Arch. Math. und Phys. (3), № 19, 224–228 (1912).

E. Landau, D. Gaier, Darstellung und Bergrundung einiger neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin, New York (1986). DOI: https://doi.org/10.1007/978-3-642-71438-2

І. Ю. Меремеля, В. В. Савчук, Точні константи в нерівностях для коефіцієнтів Тейлора обмежених голоморфних функцій у полікрузі, Укр. мат. журн., 67, № 12, 1690–1697 (2015).

F. G. Abdullayev, V. V. Savchuk, M. V. Savchuk, Best approximation-preserving operators over Hardy space,Anal. and Math. Phys., 13, № 4, Article № 63 (2023). DOI: https://doi.org/10.1007/s13324-023-00825-7

Published

25.03.2025

Issue

Section

Research articles

How to Cite

Savchuk, V., and M. Savchuk. “Generalization of the Schwarz–Pick Inequality and Its Application to the Extreme Problems of Approximation of Holomorphic Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 1, Mar. 2025, pp. 47-56, https://doi.org/10.3842/umzh.v77i1.8692.