Actions of Lie algebra $\mathfrak{sl}_2$ on symmetric polynomials and on Young diagrams

Authors

  • L. Bedratyuk Khmelnytskyi National University, Khmelnytskyi

DOI:

https://doi.org/10.3842/umzh.v78i1-2.8860

Keywords:

Lie algebra $\mathfrak{sl}_2$, representations of $\mathfrak{sl}_2$, symmetric polynomials, Schur polynomials, Young diagrams

Abstract

UDC 512.81

We propose two realizations of representations of the complex Lie algebra $\mathfrak{sl}_2$ on the algebra of symmetric polynomials $\Lambda_n$ by differential operators. For each of these realizations,  the actions on Schur polynomials are determined and the decomposition of $\Lambda_n$ into irreducible representations is obtained. By using the $\mathfrak{sl}_2$-isomorphism between $\Lambda_n$ and the vector space of Young diagrams $\mathbb{Q}\mathcal{Y}_n$ with at most $n$ rows, these representations are transferred to $\mathbb{Q}\mathcal{Y}_n.$

References

1. R. Howe, E. C. Tan, Non-Abelian harmonic analysis, Universitext, Springer–Verlag, New York (1992).

2. H. W. Gould, The Girard--Waring power sum formulas for symmetric functions, and Fibonacci sequences, Fibonacci Quart., 37, 135--140 (1999).

3. W. Fulton, J. Harris, Representation theory: a first course, Springer Science & Business Media (2013).

4. A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math., Vol. 190, Birkhäuser Verlag, Basel (2012).

5. A. van den Essen, Locally nilpotent derivations and their applications, III, J. Pure Appl. Algebra, 98, 15--23 (1995).

6. A. Nowicki, Polynomial derivations and their rings of constants, Uniwersytet Mikołaja Kopernika, Toruń (1994).

7. D. Wright, On the Jacobian conjecture, Illinois J. Math., 25, 423--440 (1981).

8. A. Weigandt, Derivatives and Schubert calculus, Talk at FPSAC Conference 2023; DOI: https://www.youtube.com/watch?v=fgzB7YjGOEc.

9. D. Grinberg, N. Korniichuk, K. Molokanov, S. Khomych, The diagonal derivative of a skew Schur polynomial, arXiv:2402.14217 (2024).

10. T. Ernst, Generalized Vandermonde determinants, Uppsala University, Department of Mathematics, Report 2000:6 (2000).

11. N. Kamran, P. J. Olver, Lie algebras of differential operators and Lie-algebraic potentials, J. Math. Anal. Appl., 145, 342--356 (1990).

12. T. A. Springer, Invariant theory, Vol. 585, Springer-Verlag, Berlin, New York (1977).

13. R. Stanley, Enumerative combinatorics, Vol. 2, Cambridge University Press, Cambridge (2001).

14. W. Fulton, Young tableaux, Cambridge University Press, Cambridge (1997).

15. A. Okounkov, $SL(2)$ and $z$-measures, Random Matrix Models and Their Applications (P. M. Bleher, A. R. Its, eds.), Math. Sci. Res. Inst. Publ., 40, 407--420, Cambridge Universitiy Press, Cambridge (2001).

16. L. Petrov, $sl(2)$ operators and Markov processes on branching graphs, J. Algebraic Combin., 38, 663--720 (2013).

17. R. P. Stanley, Differential posets, J. Amer. Math. Soc., 1, 919--961 (1988).

Published

26.01.2026

Issue

Section

Research articles

How to Cite

Bedratyuk, L. “Actions of Lie Algebra $\mathfrak{sl}_2$ on Symmetric Polynomials and on Young Diagrams”. Ukrains’kyi Matematychnyi Zhurnal, vol. 78, no. 1-2, Jan. 2026, pp. 3–21, https://doi.org/10.3842/umzh.v78i1-2.8860.