Slice entire functions of quaternionic variable of bounded index
DOI:
https://doi.org/10.3842/umzh.v77i5.8927Keywords:
slice entire function, regular function, local behavior, maximum modulus, bounded index, Fricke theorem.Abstract
UDC 517.55+512.78
We continue our investigations of the local properties of entire slice regular functions of quaternionic variable. For this class of functions, we introduce the notion of index. The boundedness of index is characterized by the local behavior of the maximum modulus of slice derivative on certain discs. The corresponding maximum is uniformly estimated by the value of the modulus of slice derivative at the center of the disc. The presented results are quaternionic generalizations of the known Fricke theorems for entire functions of complex variable.
References
1. V. P. Baksa, A. I. Bandura, On an attempt to introduce a notion of bounded index for the Fueter regular functions of the quaternionic variable, Mat. Stud., 60, № 2, 191–200 (2023); https://doi.org/10.30970/ms.60.2.191-200. DOI: https://doi.org/10.30970/ms.60.2.191-200
2. A. Bandura, N. Petrechko, O. Skaskiv, Maximum modulus in a bidisc of analytic functions of bounded $L$-index and an analogue of Hayman's theorem, Math. Bohemica, 143, № 4, 339–354 (2018); https://doi.org/10.21136/MB.2017.0110-16. DOI: https://doi.org/10.21136/MB.2017.0110-16
3. A. I. Bandura, Some improvements of criteria of $L,$ index boundedness in direction, Mat. Stud., 47, № 1, 27–32 (2017); https://doi.org/10.15330/ms.47.1.27-32. DOI: https://doi.org/10.15330/ms.47.1.27-32
4. V. Baksa, A. Bandura, O. Skaskiv, Analogs of Hayman's theorem and of logarithmic criterion for analytic vector-valued functions in the unit ball having bounded $L$-index in joint variables, Math. Slovaca, 70, № 5, 1141–1152 (2020); https://doi.org/10.1515/ms-2017-0420. DOI: https://doi.org/10.1515/ms-2017-0420
5. A. I. Bandura, T. M. Salo, O. B. Skaskiv, Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties, Mat. Stud., 57, № 1, 68–78 (2022); https://doi.org/10.30970/ms.57.1.68-78. DOI: https://doi.org/10.30970/ms.57.1.68-78
6. V. P. Baksa, A. I. Bandura, T. M. Salo, O. B. Skaskiv, Note on boundedness of the $L$-index in the direction of the composition of slice entire functions, Mat. Stud., 58, № 1, 58–68 (2022); https://doi.org/10.30970/ms.58.1.58-68. DOI: https://doi.org/10.30970/ms.58.1.58-68
7. A. Bandura, T. Salo, O. Skaskiv, $L$-index in joint variables: sum and composition of an entire function with a function with a vanished gradient, Fractal and Fractional, 7, № 8, Article ID 593 (2023); https://doi.org/10.3390/fractalfract7080593. DOI: https://doi.org/10.3390/fractalfract7080593
8. A. Bandura, T. Salo, Analytic in a unit polydisc functions of bounded $L$-index in direction, Mat. Stud., 60, № 1, 55–78 (2023); https://doi.org/10.30970/ms.60.1.55-78. DOI: https://doi.org/10.30970/ms.60.1.55-78
9. M. Sheremeta, On boundedness of the $l-m$-index of entire functions represented by series in a system of functions, Ukr. Math. J., 76, № 5, 669–679 (2024); https://doi.org/10.1007/s11253-024-02346-3. DOI: https://doi.org/10.1007/s11253-024-02346-3
10. A. I. Bandura, Application of Hayman’s theorem to directional differential equations with analytic solutions in the unit ball, Stud. Univ. Babeş-Bolyai Math., 69, № 2, 335–350 (2024); https://doi.org/10.24193/subbmath.2024.2.06. DOI: https://doi.org/10.24193/subbmath.2024.2.06
11. A. Bandura, T. Salo, O. Skaskiv, Non-homogeneous directional equations: slice solutions belonging to functions of bounded $L$-index in the unit ball, Math. Bohemica, 149, № 2, 247–260 (2024); https://doi.org/10.21136/MB.2023.0121-22. DOI: https://doi.org/10.21136/MB.2023.0121-22
12. S. A. Plaksa, V. S. Shpakivskyi, Monogenic functions in spaces with commutative multiplication and applications, Frontiers in Mathematics, Birkhўаuser, Cham, Switzerland (2023); https://doi.org/10.1007/978-3-031-32254-9. DOI: https://doi.org/10.1007/978-3-031-32254-9
13. A. Perotti, Fueter regularity and slice regularity: meeting points for two function theories, Springer INdAM Ser., № 1, 93–117 (2013); https://doi.org/10.1007/978-88-470-2445-8_6. DOI: https://doi.org/10.1007/978-88-470-2445-8_6
14. J. O. González-Cervantes, L. G. Núñez-Olmedo, J. Bory-Reyes, I. Sabadini, An approach to slice regular functions via post-quantum calculus theory, Math. Methods Appl. Sci. (2024); https://doi.org/10.1002/mma.10267. DOI: https://doi.org/10.1002/mma.10267
15. Z. Xu, I. Sabadini, On the Fueter--Sce theorem for generalized partial-slice monogenic functions, Ann. Mat. Pura ed Appl. (2024); https://doi.org/10.1007/s10231-024-01508-1. DOI: https://doi.org/10.1007/s10231-024-01508-1
16. F. Colombo, J. Gantner, D. P. Kimsey, Slice hyperholomorphic functions, Oper. Theory: Adv. and Appl., 270, 11–51 (2018); https://doi.org/10.1007/978-3-030-03074-2_2. DOI: https://doi.org/10.1007/978-3-030-03074-2_2
17. T. Kuzmenko, V. Shpakivskyi, Representations of some classes of quaternionic hyperholomorphic functions, Complex Anal. and Oper. Theory, 18, № 5, Article 116 (2024); https://doi.org/10.1007/s11785-024-01561-x. DOI: https://doi.org/10.1007/s11785-024-01561-x
18. S. V. Gryshchuk, S. A. Plaksa, A hypercomplex method for solving boundary value problems for biharmonic functions, Stud. Fuzziness and Soft Comput., 404, 231–255 (2021); https://doi.org/10.1007/978-3-030-61334-1_12. DOI: https://doi.org/10.1007/978-3-030-61334-1_12
19. S. Plaksa, Monogenic functions and harmonic vectors, Proc. Intern. Geom. Center, 16, № 1, 59–76 (2023); https://doi.org/10.15673/tmgc.v16i1.2385. DOI: https://doi.org/10.15673/tmgc.v16i1.2385
20. A. I. Bandura, O. B. Skaskiv, Open problems for entire functions of bounded index in direction, Mat. Stud., 43, № 1, 103–109 (2015); https://doi.org/10.15330/ms.43.1.103-109. DOI: https://doi.org/10.15330/ms.43.1.103-109
21. O. B. Skaskiv, Progress in the open problems of functions of bounded index, Mat. Stud., 49, № 1, 109--112 (2018); https://doi.org/10.15330/ms.49.1.109-112. DOI: https://doi.org/10.15330/ms.49.1.109-112
22. G. H. Fricke, Entire functions of locally slow growth, J. Anal. Math., 28, № 1, 101–122 (1975); https://doi.org/10.1007/BF02786809. DOI: https://doi.org/10.1007/BF02786809
23. F. Colombo, I. Sabadini, F. Sommen, D. C. Struppa, Analysis of Dirac systems and computational algebra, Springer Science + Business Media LLC (2004). DOI: https://doi.org/10.1007/978-0-8176-8166-1
24. F. Colombo, I. Sabadini, D. C. Struppa, Entire slice regular functions, Springer, Cham (2016); https://doi.org/10.1007/978-3-319-49265-0. DOI: https://doi.org/10.1007/978-3-319-49265-0
25. G. Gentili, D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math., 216, 279–301 (2007); https://doi.org/10.1016/j.aim.2007.05.010. DOI: https://doi.org/10.1016/j.aim.2007.05.010
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Віта Бакса, Андрій Бандура, Олег Скасків

This work is licensed under a Creative Commons Attribution 4.0 International License.