Optimal recovery of mappings, optimal information operators, and extremal subspaces

Authors

  • V. Babenko Oles Honchar Dnipro National University
  • Yu. Babenko Kennesaw State University, USA
  • N. Parfinovych Oles Honchar Dnipro National University

DOI:

https://doi.org/10.3842/umzh.v77i7.8942

Keywords:

Abstract splines, optimal recovery, optimal information operators, widths, extremal subspaces

Abstract

UDC 517.5

We consider the problems of optimal recovery of an operator $A$ (generally speaking, nonlinear) defined on a unit ball $B_H$ of the Hilbert space $H$ based on the information about elements of this unit ball $B_H$ given by a linear bounded operator $T\colon H\to Y,$ where $Y$ is a Banach space. For a fixed information operator $T,$ it is shown that the optimal method of recovery is offered by the so-called $T$-interpolating splines. For a fixed $Y$ we also solve the problem of finding the optimal information operator. Moreover, for a bounded linear self-adjoint operator $A,$ it is shown that if $T$ is the optimal information operator for the recovery of $A$ on $B_H,$ then any other operator $TA^n,$ $n\in\mathbb N,$ is also an optimal information operator.

References

1. M. Atteia, Généralisation de la définition et des propriétés des ``spline-fonctions'', C. R. Acad. Sci. Paris, 260, 3550–3553 (1965).

2. M. Golomb, Splines, $n$-widths and optimal approximations, MRC Technical Summary Report 784, Mathematics Research Center, US Army, Madison, Wisconsin (1967).

3. P.-J. Laurent, Approximation ae Optimisation, Hermann, Paris (1972) .

4. R. Champion, C. T. Lenard, T. M. Miles, A variational approach to splines, ANZIAM J., 42, 119–135 (2000). DOI: https://doi.org/10.1017/S1446181100011652

5. A. I. Bezhaev, V. A. Vasilenko, Variational theory of splines, Springer (2001). DOI: https://doi.org/10.1007/978-1-4757-3428-7

6. Дж. Трауб, Х. Вожьняковський, Загальна теорія оптимальних алгоритмів, Мир, Москва (1983) (російською).

7. Н. П. Корнейчук, Оптимальні методи кодування та відновлення функцій, Proc. Int. Symp. Optimal Algorithms (Blagoevgrad, April 21–25, 1986), Bulgar. Acad. Sci., Sofia, 157–171 (1986) (російською).

8. N. P. Korneichuk, Exact constants in approximation theory, Cambridge University Press (1991). DOI: https://doi.org/10.1017/CBO9781107325791

9. A. Pinkus, N-widths in approximation theory, Springer-Verlag, Berlin and Heidelberg GmbH & Co. K. (2012).

10. M. S. Floater, E. Sande, Optimal spline spaces of higher degree for $L^2$ $n$-widths, J. Approx. Theory, 216, 1–15 (2017). DOI: https://doi.org/10.1016/j.jat.2016.12.002

11. M. Floater, E. Sande, On periodic $L^2$ $n$-widths, J. Comput. and Appl. Math., 349, 403–409 (2019). DOI: https://doi.org/10.1016/j.cam.2018.08.058

Published

27.08.2025

Issue

Section

Research articles

How to Cite

Babenko, V., et al. “Optimal Recovery of Mappings, Optimal Information Operators, and Extremal Subspaces”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 7, Aug. 2025, pp. 455–460, https://doi.org/10.3842/umzh.v77i7.8942.