On integral functions with derivatives univalent in a circle

Authors

  • M. N. Sheremeta Львов. ун-т

Keywords:

-

Abstract

It is proved that if the increasing sequence $n_p$  of natural numbers satisfies the condition $n_{p+1}/n_p→1 (p→\infty)$ and all derivatives $f^{(n_p)}$  of the analytic function $f$ in $D=\{z : |z | < 1\}$ are univalent in $D$, then $f$ is an entire function. At the same time, for each increasing sequence $(n_p)$ natural numbers such that $n_{p+1}/n_p→1 (p→\infty)$ there exists an analytic function $f$  in $D$  all of whose derivatives $f^{(n_p)}$ are univalent in $D$  and $\partial D$  is the boundary for $f$. The growth of entire functions with derivatives univalent in the disc $D$ is also studied.

References

1. Shah. S. M., Trimble S. Y. Univalent henctions with univalent derivatives// Bull. Amer. Math. Soc.— 1969.— 75.— P. 153—157.

2. Shan S. M., Trimble S. Y. Univalent henctions vith univalent derivatives. III // J. Math. and Meeh.— 1969—1970.— 19.— P. 451—460.

3. Branges Louis de. A proof of the Bieberbach. conjecture//Acta math.— 1985.— 154, N 1—2.—P. 137—152.

4. Шеремета M. H. О связи между ростом максимума модуля целой функции и модулями коэффициентов ее степенного разложения // Изв. вузов. Математика.— 1967.— № 2.— С. 100—108.

5. Бибербах Л. Аналитическое продолжение.— М. : Наука, 1967.— 240 с.

Published

28.02.1991

Issue

Section

Research articles

How to Cite

Sheremeta , M. N. “On Integral Functions With Derivatives Univalent in a Circle”. Ukrains’kyi Matematychnyi Zhurnal, vol. 43, no. 3, Feb. 1991, pp. 400-6, https://umj.imath.kiev.ua/index.php/umj/article/view/9622.