On integral functions with derivatives univalent in a circle
Keywords:
-Abstract
It is proved that if the increasing sequence $n_p$ of natural numbers satisfies the condition $n_{p+1}/n_p→1 (p→\infty)$ and all derivatives $f^{(n_p)}$ of the analytic function $f$ in $D=\{z : |z | < 1\}$ are univalent in $D$, then $f$ is an entire function. At the same time, for each increasing sequence $(n_p)$ natural numbers such that $n_{p+1}/n_p→1 (p→\infty)$ there exists an analytic function $f$ in $D$ all of whose derivatives $f^{(n_p)}$ are univalent in $D$ and $\partial D$ is the boundary for $f$. The growth of entire functions with derivatives univalent in the disc $D$ is also studied.
References
1. Shah. S. M., Trimble S. Y. Univalent henctions with univalent derivatives// Bull. Amer. Math. Soc.— 1969.— 75.— P. 153—157.
2. Shan S. M., Trimble S. Y. Univalent henctions vith univalent derivatives. III // J. Math. and Meeh.— 1969—1970.— 19.— P. 451—460.
3. Branges Louis de. A proof of the Bieberbach. conjecture//Acta math.— 1985.— 154, N 1—2.—P. 137—152.
4. Шеремета M. H. О связи между ростом максимума модуля целой функции и модулями коэффициентов ее степенного разложения // Изв. вузов. Математика.— 1967.— № 2.— С. 100—108.
5. Бибербах Л. Аналитическое продолжение.— М. : Наука, 1967.— 240 с.
Downloads
Published
Issue
Section
License
Copyright (c) 1991 М. Н. Шеремета

This work is licensed under a Creative Commons Attribution 4.0 International License.