Some properties of the moduli of continuity of periodic functions in metric spaces

Authors

  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

Let $L_0(T)$) be the set of real-valued periodic measurable functions, let $\Psi : R^{+} \rightarrow R^{+}$ be the modulus of continuity, and let $$L_{\Psi} \equiv L_{\Psi} (T) = \left\{ f \in L_0(T) : \| f\| _{\Psi} := \frac1{2\pi} \int_T \Psi (| f(x)| )dx < \infty \right\}.$$ We study the properties of multiple modules of continuity for the functions from $L_{\Psi}$.

Downloads

Published

25.12.2016

Issue

Section

Research articles

How to Cite

Pichugov, S. A. “Some Properties of the Moduli of Continuity of Periodic Functions in Metric Spaces”. Ukrains’kyi Matematychnyi Zhurnal, vol. 68, no. 12, Dec. 2016, pp. 1657-64, https://umj.imath.kiev.ua/index.php/umj/article/view/1951.