Smoothness of functions in the metric spaces Lψ

Authors

  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

Let $L_0(T)$ be thе set of real-valued periodic measurable functions, let $\psi : R^+ \rightarrow R^+$ be a modulus of continuity $(\psi \neq 0)$ , and let $$L_{\psi} \equiv L_{\psi}(T ) = \left\{f \in L_0 (T ): ||f||_{\psi} := \int_T \psi( |f (x)| ) dx < \infty \right\}.$$ The following problems are investigated: Relationship between the rate of approximation of $f$ by trigonometric polynomials in $L_{\psi}$ and smoothness in $L_1$. Correlation between the moduli of continuity of $f$ in $L_{\psi}$ and $L_1$, and theorems on imbedding of the classes $\text{Lip} (\alpha, \psi)$ in $L_1$. Structure of functions from the class $\text{Lip}(1, \psi)$.

Published

25.09.2012

Issue

Section

Research articles

How to Cite

Pichugov, S. A. “Smoothness of Functions in the Metric Spaces Lψ”. Ukrains’kyi Matematychnyi Zhurnal, vol. 64, no. 9, Sept. 2012, pp. 1214-32, https://umj.imath.kiev.ua/index.php/umj/article/view/2653.