Structural stability of matrix pencils and of matrix pairs under contragredient equivalence
Abstract
UDC 512.64A complex matrix pencil $A-\lambda B$ is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs $(M,N)$ of $m\times n$ and $n\times m$ complex matrices ($m,n\ge 1$) that are structurally stable under the contragredient equivalence $(S^{-1}MR, R^{-1}NS),$ in which $S$ and $R$ are nonsingular.
Published
25.05.2019
How to Cite
García-Planas, M. I., and T. Klymchuk. “Structural Stability of Matrix Pencils and of Matrix pairs
under Contragredient Equivalence”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, no. 5, May 2019, pp. 706-9, https://umj.imath.kiev.ua/index.php/umj/article/view/1468.
Issue
Section
Short communications