Integral operators preserving subordination and superordination for multivalent functions

Keywords: Analytic function, convex function, differential subordination and superordination, subordination chain, integral operator

Abstract

UDC 517.9

We obtain subordination, superordination and sandwich-preserving new theorems for certain integral operators defined on multivalent functions. The sandwich-type theorem for these integral operators is also derived and our results extend some earlier ones. Combining these new theorems with some previous related results, we give interesting subordination and superordination consequences for a wide class of analytic integral operators.

References

T. Bulboacaă, Integral operators that preserve the subordination, Bull. Korean Math. Soc., 34, no. 4, 627 – 636 (1997).

T. Bulboacaă, On a class of integral operators that preserve the subordination, Pure Math. and Appl (PU.M.A.), 13, no. 1-2, 87 – 96 (2002).

T. Bulboacaă, A class of superordination-preserving integral operators, Indag. Math (N.S.), 13, no. 3, 301 – 311 (2002), https://doi.org/10.1016/S0019-3577(02)80013-1 DOI: https://doi.org/10.1016/S0019-3577(02)80013-1

T. Bulboacaă, Sandwich-type theorems for a class of integral operators, Bull. Belg. Math. Soc. Simon Stevin, 13, № 3, 537 – 550 (2006), http://projecteuclid.org/euclid.bbms/1161350695 DOI: https://doi.org/10.36045/bbms/1161350695

T. Bulboacaă, Sandwich-type results for a class of convex integral operators, Acta Math. Sci. Ser. B (Engl. Ed.), 32, № 3, 989 – 1001 (2012), https://doi.org/10.1016/S0252-9602(12)60074-5 DOI: https://doi.org/10.1016/S0252-9602(12)60074-5

N. E. Cho, T. Bulboacaă, Subordination and superordination properties for a class of integral operators, Acta Math. Sin (Engl. Ser.), 26, № 3, 515 – 522 (2010), https://doi.org/10.1007/s10114-010-8488-6 DOI: https://doi.org/10.1007/s10114-010-8488-6

T. H. Gronwall, Some remarks on conformal representation, Ann. Math., 16, no. 1-4, 72 – 76 (1914 – 1915), https://doi.org/10.2307/1968044 DOI: https://doi.org/10.2307/1968044

S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28, № 2, 157 – 172 (1981). DOI: https://doi.org/10.1307/mmj/1029002507

S. S. Miller, P. T. Mocanu, Univalent solutions of Briot – Bouquet differential equations, J. Different. Equat., 56, № 3, 297 – 309 (1985), https://doi.org/10.1016/0022-0396(85)90082-8 DOI: https://doi.org/10.1016/0022-0396(85)90082-8

S. S. Miller, P. T. Mocanu, Integral operators on certain classes of analytic functions, Univalent Functions, Fractional Calculus and their Applications, Halstead Press, J. Wiley & Sons, New York (1989), p. 153 – 166.

S. S. Miller, P. T. Mocanu, Classes of univalent integral operators, J. Math. Anal. and Appl., 157, № 1, 147 – 165 (1991), https://doi.org/10.1016/0022-247X(91)90141-L DOI: https://doi.org/10.1016/0022-247X(91)90141-L

S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, series on monographs and textbooks in pure and applied mathematics, 225, Marcel Dekker, New York; Basel (2000).

S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Var., Theory and Appl., 48, № 10, 815 – 826 (2003), https://doi.org/10.1080/02781070310001599322 DOI: https://doi.org/10.1080/02781070310001599322

Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, G¨ottingen (1975).

Published
18.06.2021
How to Cite
Aouf M. K., BulboacăT., and SeoudyT. “Integral Operators Preserving Subordination and Superordination for Multivalent Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 6, June 2021, pp. 749 -62, doi:10.37863/umzh.v73i6.437.
Section
Research articles