Про один клас подвiйних перехресних бiдобуткiв
Анотація
Нехай $H$ — бiалгебра, $A$ — алгебра та водночас лiва $H$-комодульна коалгебра, а $B$ — алгебра та водночас права $H$-комодульна коалгебра. Крiм того, нехай $f : H \otimes H \rightarrow A\otimes H,\; R : H \otimes A \rightarrow A\otimes H$ та $T : B \otimes H \rightarrow H \otimes B$ — лiнiйнi вiдображення. Наведено необхiднi та достатнi умови для того, щоб одностороння алгебра Бжезiнського $A\#^f_RH_T\#B$ з перехресним добутком та двостороння коалгебра $A \times H \times B$ зi схрещеним кодобутком утворювали бiалгебру, що узагальнює основнi результати, отриманi в [On Ranford biproduct // Communs Algebra. – 2015. – 43, № 9. – P. 3946 – 3966]. Очевидно, що як подвiйний бiдобуток Маджiда [Double-bosonization of braided groups and the construction of $U_q(g)$ // Math. Proc. Cambridge Phil. Soc. – 1999. – 125, № 1. – P. 151 – 192], так i перехресний добуток Ванга – Джао –Жао [Hopf algebra structures on crossed products // Communs Algebra. – 1998. – 26. – P. 1293 – 1303] можна отримати як частиннi випадки.Завантаження
Опубліковано
25.11.2018
Номер
Розділ
Статті
Як цитувати
Донг, Л. Г., et al. “Про один клас подвiйних перехресних бiдобуткiв”. Український математичний журнал, vol. 70, no. 11, Nov. 2018, pp. 1533-40, https://umj.imath.kiev.ua/index.php/umj/article/view/1657.